Question

In the laboratory a "coffee cup" calorimeter, or constant pressure calorimeter, is frequently used to determine...

In the laboratory a "coffee cup" calorimeter, or constant pressure calorimeter, is frequently used to determine the specific heat of a solid, or to measure the energy of a solution phase reaction. Since the cup itself can absorb energy, a separate experiment is needed to determine the heat capacity of the calorimeter. This is known as calibrating the calorimeter and the value determined is called the calorimeter constant. One way to do this is to use a common metal of known heat capacity. In the laboratory a student heats 97.50 grams of nickel to 97.64 °C and then drops it into a cup containing 83.67 grams of water at 21.42 °C. She measures the final temperature to be 29.78 °C. Using the accepted value for the specific heat of nickel (See the References tool), calculate the calorimeter constant.

Calorimeter Constant =  J/°C.

Homework Answers

Answer #1

1-Energy given up by hot nickel=mass of nickel *specific heat*temperature change=q1=97.5*67.86*0.44=2911.194J (Specific heat of ni=0.44J/g•C) (Temperature diffrence=97.64-29.78=67.86•C)

2-Energy absorbed=q2=mass of Ni* specific heat of Ni*temperature change during process of absorption of heat= 97.5*0.44*(29.78-21.42)=358.644J

3-Diffrence between heat(which is basically absorbed by calorimeter) =q1-q2=2911.194-358.644=2552.55J

4-calorimetric constant=Heat absorbed by calorimeter/temperature change during absorption =2552.55/8.36=305.32J/•C

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In the laboratory a "coffee cup" calorimeter, or constant pressure calorimeter, is frequently used to determine...
In the laboratory a "coffee cup" calorimeter, or constant pressure calorimeter, is frequently used to determine the specific heat capacity of a solid, or to measure the enthalpy of a solution phase reaction.   Since the cup itself can absorb energy, a separate experiment is needed to determine the heat capacity of the calorimeter. This is known as calibrating the calorimeter and the value determined is called the calorimeter constant.   One way to do this is to use a common metal...
two parts for one question ----------------------------------------- In the laboratory a "coffee cup" calorimeter, or constant pressure...
two parts for one question ----------------------------------------- In the laboratory a "coffee cup" calorimeter, or constant pressure calorimeter, is frequently used to determine the specific heat of a solid, or to measure the energy of a solution phase reaction. Since the cup itself can absorb energy, a separate experiment is needed to determine the heat capacity of the calorimeter. This is known as calibrating the calorimeter and the value determined is called the calorimeter constant. One way to do this is...
In the laboratory a "coffee cup" calorimeter, or constant pressure calorimeter, is frequently used to determine...
In the laboratory a "coffee cup" calorimeter, or constant pressure calorimeter, is frequently used to determine the specific heat of a solid, or to measure the energy of a solution phase reaction. A student heats 60.93 grams of gold to 98.87 °C and then drops it into a cup containing 79.68 grams of water at 24.46 °C. She measures the final temperature to be 26.11 °C. The heat capacity of the calorimeter (sometimes referred to as the calorimeter constant) was...
In the laboratory a "coffee cup" calorimeter, or constant pressure calorimeter, is frequently used to determine...
In the laboratory a "coffee cup" calorimeter, or constant pressure calorimeter, is frequently used to determine the specific heat of a solid, or to measure the energy of a solution phase reaction. A chunk of zinc weighing 18.01 grams and originally at 98.77 °C is dropped into an insulated cup containing 83.17 grams of water at 20.02 °C. The heat capacity of the calorimeter (sometimes referred to as the calorimeter constant) was determined in a separate experiment to be 1.56...
In the laboratory a student uses a "coffee cup" calorimeter to determine the specific heat of...
In the laboratory a student uses a "coffee cup" calorimeter to determine the specific heat of a metal. She heats 19.5 grams of tungsten to 97.80°C and then drops it into a cup containing 78.3 grams of water at 22.58°C. She measures the final temperature to be 23.20°C. Assuming that all of the heat is transferred to the water, she calculates the specific heat of tungsten to be  J/g°C.
A)In the laboratory a student uses a "coffee cup" calorimeter to determine the specific heat of...
A)In the laboratory a student uses a "coffee cup" calorimeter to determine the specific heat of a metal. She heats 19.3 grams of chromium to 98.47°C and then drops it into a cup containing 81.8 grams of water at 23.17°C. She measures the final temperature to be 24.97°C. Assuming that all of the heat is transferred to the water, she calculates the specific heat of chromium to be __________________ J/g°C. B) An electric range burner weighing 616.0 grams is turned...
1. A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine...
1. A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. In an experiment, a 0.4137 g sample of bianthracene (C28H18) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1.361×103 g of water. During the combustion the temperature increases from 24.82 to 27.25 °C. The heat capacity of water is 4.184 J g-1°C-1. The heat capacity of the calorimeter...
A student wishes to determine the heat capacity of a coffee-cup calorimeter. After she mixes 95.8...
A student wishes to determine the heat capacity of a coffee-cup calorimeter. After she mixes 95.8 g of water at 62°C with 95.8 g of water, already in the calorimeter, at 18.2°C, the final temperature of the water is 35.0°C. Calculate the heat capacity of the calorimeter in J/K. Use 4.184 J/g°C as the specific heat of water.
I recently did a lab where we used a Styrofoam coffee cup calorimeter to determine the...
I recently did a lab where we used a Styrofoam coffee cup calorimeter to determine the specific heat of an unknown metal. We just determined our "calorimeter constant." We now have to re-do all of our prior calculations to include this new constant. I may have written down the wrong equation, so could someone show me an example given the following information? Heat capacity of calorimeter: 41.6 J/gC Mass of metal: 43.0760g Mass of water: 20.6314g Delta T water: 21.1...
A 5.30M solution of HCl (500mL) is placed in a coffee-cup calorimeter containing 50.0g in ice...
A 5.30M solution of HCl (500mL) is placed in a coffee-cup calorimeter containing 50.0g in ice cubes. A 50.0g-piece of manganese is dropped into the calorimeter. After the reaction, the temperature of the mixture has risen from 0.0°C to 20.4°C. [∆fusH = 333J/g; ∆vapH= 2260J/g] a) Assuming the solution has a specific heat capacity of 4.184J/gK and a density of 1.00g/mL and the calorimeter does not absorb any heat, calculate the heat (in J) involved in this reaction. b) What...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT