Question

Calculate the change in G for a reaction mixture that consists of 1 atm N2, 3atm...

Calculate the change in G for a reaction mixture that consists of 1 atm N2, 3atm H2, and .5 atm NH3
(N2 +3H2 2NH3)

Homework Answers

Answer #1

Solution-

Given

P(N2) = 1.0 atm

P(H2) = 3.0atm

P(NH3) = 0.5 atm

R = 8.3145 J/K.mol = 0.0083145 kJ/K.mol

Here we consider reaction is at room temperature (25 °), T = 298 K

Reaction is

N2(g) + 3H2(g) --> 2NH3(g)

Free energy on pressure (ΔG) is given by the formula

ΔG = ΔG° + RT ln Q
Here

Q = P (NH3) ^2/ P(N2) * P^3(H2)

= (0.5 atm)^2/1.0 atm*3.0atm = 0.083

Q = 0.083

When system is at equilibrium ΔG° = - 33.3 kJ/mol

Let’s calculate the ΔG
ΔG = ΔG° + RT ln Q = - 33.3 kJ/mol + 0.0083145 kJ/K.mol * 298 ln (0.083)

= -33.3 + 2.477 *(-2.488) = -33.3 – 6.16

ΔG = -39.46 kJ/mol

Answer change in G for a reaction mixture (ΔG) = -39.46 kJ/mol

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In the Haber process, ammonia is synthesized from nitrogen and hydrogen: N2(g) + 3H2(g) → 2NH3(g)...
In the Haber process, ammonia is synthesized from nitrogen and hydrogen: N2(g) + 3H2(g) → 2NH3(g) ΔG° at 298 K for this reaction is -33.3 kJ/mol. The value of ΔG at 298 K for a reaction mixture that consists of 1.7 atm N2, 3.2 atm H2, and 0.85 atm NH3 is a) -139.6 b) 0.43 c) -4.63 × 103 d) -44.1 e) -1.08 × 104
N2(g) + 3H2(g) -> 2NH3 (g) You charge a reaction vessel with 1.00 atm of all...
N2(g) + 3H2(g) -> 2NH3 (g) You charge a reaction vessel with 1.00 atm of all three gasses (N2,H2, and NH3) and allow them to come to equilibrium at 287K. you determine that 13.20% of the N2 gas has been consumed. what is delta G standard for this reaction based on these conditions?
N2(g) + 3H2(g) →2NH3(g) If there is 10.02 g N2 and excess H2 present, the reaction...
N2(g) + 3H2(g) →2NH3(g) If there is 10.02 g N2 and excess H2 present, the reaction yields 9.47 g NH3. Calculate the percent yield for the reaction
The chemical reaction N2(g) + 3H2(g) 2NH3(g) is carried out at 400. K. Assume the partial...
The chemical reaction N2(g) + 3H2(g) 2NH3(g) is carried out at 400. K. Assume the partial pressures of N2(g), H2(g), and NH3(g) are 1.0, 4.2, and 63 atm, respectively. The value of Kp = 54 at 700. K. for this reaction. (a) Calculate the reaction free energy. (b) Indicate whether this reaction mixture is likely to form reactants, is likely to form products, or is at equilibrium.
consider the reaction: N2(g)+3h2 <-------> 2NH3(g). Kp for this reactin at 723K is 4.51x10-5. indicate in...
consider the reaction: N2(g)+3h2 <-------> 2NH3(g). Kp for this reactin at 723K is 4.51x10-5. indicate in each reation is at equilibrium. if not, indicate in which direction the reaction must proceed to reach equilibrium. a. 100 atm NH3(g), 30 atm N2(g), 500 atm H2(g) b. 2.0M NH3(g), 3.0M N2(g) , 5.0 H2(g) must show work to recieve full credit on hw assignment!
calculate the standard free energy change delta G for reaction N2 (g) +3H2(g)—>2NH3 N2 delta H=0.00kj...
calculate the standard free energy change delta G for reaction N2 (g) +3H2(g)—>2NH3 N2 delta H=0.00kj mol^-1s=+191.5J mol^-1K^-1 H2 delta H=0.00kj mol^-1,s = +130.6j mol^-1 k-1 NH3 delta H=-46.0kj mol^-1,s =192.5 J mol^-1 k-1 A. +112.3 kJ B.-87.6kJ C.-7.4kJ D.-32.9 kJ E.-151.1kJ
Consider the reaction for the Haber Process: 3H2 (g) + N2 (g) <--> 2NH3(g) A mixture...
Consider the reaction for the Haber Process: 3H2 (g) + N2 (g) <--> 2NH3(g) A mixture of 1.0 mol each of N2, H2, and NH3 are placed into a 1.0 L flask and allowed to come to equilibrium at 500.0 C. Kp at this temperature is 1.45 x 10-5 atm-2. A.) What is the value of Kc at this temperature? irst find the relationship between Kc and Kp in terms of RT. Then substitute T = 773K and R =...
kc= 0.00592 for the reaction below at 351 K. N2 (g) + 3H2 (g) <----> 2NH3...
kc= 0.00592 for the reaction below at 351 K. N2 (g) + 3H2 (g) <----> 2NH3 (g). What is Kc at 351 K for the reaction: 1/3 N2 (g) +H2 (g)<--->2/3 NH3 (g)
If 1.0 g of H2 reacts with excess N2 according to the reaction below, how much...
If 1.0 g of H2 reacts with excess N2 according to the reaction below, how much NH3 will be formed? 3H2(g) + N2(g) ? 2NH3(g)
N2(g) + 3H2(g) → 2NH3(g) 5.00 g N2 is reacted with 5.00 g H2 How many...
N2(g) + 3H2(g) → 2NH3(g) 5.00 g N2 is reacted with 5.00 g H2 How many mol NH3 can be produced in this reaction?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT