Question

The equilibrium concentrations in a gas mixture at a particular temperature are 0.13 M H2, 0.70...

The equilibrium concentrations in a gas mixture at a particular temperature are 0.13 M H2, 0.70 M I2, and 2.1 HI. Part A What equilibrium concentrations are obtained at the same temperature when 0.21 mol of HI is injected into an empty 460 mL container?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
at a particular temperature, K= 1.00 x 102 for the reaction H2 (g) + I2 (g)...
at a particular temperature, K= 1.00 x 102 for the reaction H2 (g) + I2 (g) <-> 2HI (g) In an experiment, 1.00 mole of H2, 1.00 mole of I2, and 1.00 mole of HI are introduced into a 1.00-L container. calculate the concentrations of all species when equilibrium is reached. please do step by step
Hydrogen iodide decomposes according to the following reaction. 2 HI(g) equilibrium reaction arrow H2(g) + I2(g)...
Hydrogen iodide decomposes according to the following reaction. 2 HI(g) equilibrium reaction arrow H2(g) + I2(g) A sealed 1.5 L container initially holds 0.00615 mol H2, 0.00445 mol I2, and 0.0163 mol HI at 703 K. When equilibrium is reached, the equilibrium concentration of H2(g) is 0.00364 M. What are the equilibrium concentrations of HI(g) and I2(g)?
At a certain temperature, the equilibrium constant, Kc, for this reaction is 53.3. H2(g) + I2(g)...
At a certain temperature, the equilibrium constant, Kc, for this reaction is 53.3. H2(g) + I2(g) <-------> 2 HI(g) Kc=53.3 At this temperature, 0.600 mol of H2 and 0.600 mol of I2 were placed in a 1.00-L container to react. What concentration of HI is present at equilibrium?
At a certain temperature, the equilibrium constant, Kc, for this reaction is 53.3. H2(g) + I2(g)...
At a certain temperature, the equilibrium constant, Kc, for this reaction is 53.3. H2(g) + I2(g) <----> 2HI(g) Kc=53.3 At this temperature, 0.400 mol of H2 and 0.400 mol of I2 were placed in a 1.00-L container to react. What concentration of HI is present at equilibrium?
. If 2.00 mol of H2 and 1.00 mol of I2 come to equilibrium at this...
. If 2.00 mol of H2 and 1.00 mol of I2 come to equilibrium at this temperature (458ºC), how many moles of HI will be in the final mixture? (First, consider this question: Why is the volume of the container not needed for this problem?) H2(g) + I2(g)  2HI(g) Kc = 50.3 at 458ºC
At 400 K, an equilibrium mixture of H2, I2, and HI consists of 0.082 mol H2,...
At 400 K, an equilibrium mixture of H2, I2, and HI consists of 0.082 mol H2, 0.084 mol I2, and 0.15 mol HI in a 2.50-L flask. What is the value of Kp for the following equilibrium? (R = 0.0821 L · atm/(K · mol)) 2HI(g) H2(g) + I2(g) A. 0.045 B. 7.0 C. 22 D. 0.29 E. 3.4
At a certain temperature, the equilibrium constant, Kc for this reaction is 53.3. H2(g)+I2(g) = 2HI(g)...
At a certain temperature, the equilibrium constant, Kc for this reaction is 53.3. H2(g)+I2(g) = 2HI(g) At this temperature, 0.300 mol of H2 and 0.300 mol of I2 were placed in a 1.00 L container to react. What concentration of HI is present at equilibrium? View comments (1)
a reaction mixture of 0.00623 M H2, 0.00414 M I2 and 0.0224 M HI is placed...
a reaction mixture of 0.00623 M H2, 0.00414 M I2 and 0.0224 M HI is placed in a steel container of 1.0 L. The reaction that takes place is: H2 (g) + I2 (g) ⇌ 2 HI (g). Kc= 54.3 at 430 °C a) Calculate the reaction quotient, Qc, for the initial mixture. b) Will the reaction proceed toward making HI? c) Calculate the concentration of these species at equilibrium.
The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) --> H2(g)...
The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) --> H2(g) + I2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 698 K contains 0.322 M HI,   4.33×10-2 M H2 and 4.33×10-2 M I2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 0.213 mol of HI(g) is added to the flask? [HI] = M [H2] = M [I2] = M
An equilibrium mixture contains 0.710 mol HI, 0.460 mol I2, and 0.250 mol H2 in a...
An equilibrium mixture contains 0.710 mol HI, 0.460 mol I2, and 0.250 mol H2 in a 1.00-L flask. What is the equilibrium constant for the following reaction? 2HI(g) H2(g) + I2(g) K = How many moles of I2 must be removed in order to double the number of moles of H2 at equilibrium? _______ mol I2