Question

An excited hydrogen atom emits light with a wavelength of 397.2 nm to reach the energy...

An excited hydrogen atom emits light with a wavelength of 397.2 nm to reach the
energy level for which n = 2. In which principal quantum level did the electron
begin? (c = 3.00 x 108 m/s, h = 6.63 x 10-34 J•s, RH = 2.18 x 10-18J).

Homework Answers

Answer #1

According to Rydberg equation

= RH × ( - )

given, = 397.2 nm = 397.2 ×10-9 m .

ni = 2

RH = 2.18×10-18 J = ( 2.18×10-18 × ) m-1

= 2.18×10-18 × m-1

= 1.096 ×107 m-1 .

so,

= 1.096 × 107 ( - )

or, ( - ) =

or, = ( - 0.2296 )

or, = 0.0205

or, nf2 = 49

or, nf = 7.

Hence, the electron began at principal quantum number 7.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The hydrogen atom, changing from its first excited state to its lowest energy state, emits light...
The hydrogen atom, changing from its first excited state to its lowest energy state, emits light with a wavelength of 122 nm. That is in the far ultraviolet. The sodium atom, which like hydrogen has one electron that gets excited outside a core of 10 other electrons, emits light at 589 nm making a similar transition from its first excited state to its lowest state. Which of these statements would be true about the sodium and hydrogen atoms and their...
An electron in an excited state of a hydrogen atom emits two photons in succession, the...
An electron in an excited state of a hydrogen atom emits two photons in succession, the first at 3037 nm and the second at 94.92 nm, to return to the ground state (n=1). For a given transition, the wavelength of the emitted photon corresponds to the difference in energy between the two energy levels. What were the principal quantum numbers of the initial and intermediate excited states involved?
4 a) A hydrogen atom in the ground state absorbs a photon of wavelength 97.2 nm....
4 a) A hydrogen atom in the ground state absorbs a photon of wavelength 97.2 nm. What energy level does the electron reach? b) This excited atom then emits a photon of wavelength 1875.4 nm. What energy level does the electron fall to?
A hydrogen atom in the ground state absorbs a photon of wavelength 95.0 nm. What energy...
A hydrogen atom in the ground state absorbs a photon of wavelength 95.0 nm. What energy level does the electron reach? This excited atom then emits a photon of wavelength 434.1 nm. What energy level does the electron fall to? -I know this question has already been asked on Chegg but each question I go to has different calculations and I can't get the right answer.
9) a. Explain what is happening inside an atom when it emits light. 9) b. Explain...
9) a. Explain what is happening inside an atom when it emits light. 9) b. Explain what is happening inside an atom when it absorbs light. 10) An excited hydrogen atom emits light with a frequency of 1.141 x 1014 Hz for its electron to reach the n=4 energy level. In which energy level did the electron begin? Big hint: what is the sign (neg or pos) of the electron’s energy change? (Remember, it says “emits”) Use this sign when...
When ultraviolet light with a wavelength of 400 nm falls on a certain metal surface, the...
When ultraviolet light with a wavelength of 400 nm falls on a certain metal surface, the maximum kinetic energy of the emitted photoelectrons is 1.10 eV . What is the maximum kinetic energy K_0 of the photoelectrons when light of wavelength 340 nm falls on the same surface? Use h = 6.63×10−34 J⋅s for Planck's constant and c = 3.00×108 m/s for the speed of light and express your answer in electron volts. View Available Hint(s) K_0 =    eV
The electron in a hydrogen atom falls from an excited energy level to the ground state...
The electron in a hydrogen atom falls from an excited energy level to the ground state in two steps, causing the emission of photons with wavelengths of 656.5 nm and 121.6 nm (So the in the first step the 656.5 nm photon is emitted and in the second step the 121.6 nm photon is emitted). What is the principal quantum number (ni) of the initial excited energy level from which the electron falls?
Light from a laser of wavelength 475 nm is incident upon an atom of hydrogen in...
Light from a laser of wavelength 475 nm is incident upon an atom of hydrogen in the first excited state. (a) What is the highest energy level (value of n) to which the hydrogen atom can be excited by the laser?   (b) What happens if the laser wavelength is 295 nm? Another way to get the energy levels of the Bohr atom is to assume that the stationary states are those for which the circumference of the orbit is an...
A hydrogen atom is in its third excited state. The atom emits a 1.88E+3nm wavelength photon....
A hydrogen atom is in its third excited state. The atom emits a 1.88E+3nm wavelength photon. Determine the maximum possible orbital angular momentum of the electron after emission. Express your answer as multiples of hbar.
Will a photon of light of wavelength 480 nm excite an electron in the hydrogen atom...
Will a photon of light of wavelength 480 nm excite an electron in the hydrogen atom from the n=1 level to the n=2 level? Explain