Question

An isobaric reactor is fed an equimolar mixture of carbon monoxide (CO) and steam (H2O) at...

An isobaric reactor is fed an equimolar mixture of carbon monoxide (CO) and steam (H2O) at 400 K and 1 bar. If 60% of the H2O is converted to H2 through the following reaction, calculate how much heat must be added to the reactor in kJ/mol H2 produced if the product stream leaves the reactor at 700 K. Assume ideal gas behavior for all species.

CO(g) + H2O(g) → CO2(g) + H2(g)

Homework Answers

Answer #1

The reaction is

CO(g) + H2O(g) → CO2(g) + H2(g)

The reactor is isobaric which means the pressure will remain constant

Let initially we have 1 mole of each reactants

The conversion is 60% which means that after reaction the mixture will have

0.4 moles of each CO and H2O

0.6 moles of each CO2 and H2

Now heat capacities of each are as follows

CO = 28.12

H2O = 32.218

H2 = 29.1

CO2 = 22.24

So heat before the start will be

Moles of reactants X heat capacity X temperature

CO = 1 X 28.12 X 400 = 11248

H2O = 29.1 X 400 = 11640

Total = 22888 Joules

After reaction

reactants = 0.4 X 22888 X 700 / 400= 16021.6 Joules

CO2 = 0.6 X 22.24 X 700 = 9340.8 J

H2 = 0.6 X 29.1 X 700 = 12222 Joules

so total heat = 37584.4 Joules

Heat required = 37584.4 - 22888= 14696.4 Joules

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
One method for the manufacture of “synthetic gas” is the catalytic reforming of methane with steam...
One method for the manufacture of “synthetic gas” is the catalytic reforming of methane with steam at high temperature and atmospheric pressure: CH4 (g)+ H2O(g)→ CO(g)+ 3H2 (g) The only other reaction to be considered is the water-gas-shift reaction: CO (g)+ H2O(g)→ CO2 (g)+ H2 (g) If the reactants (methane and steam) are supplied in the ratio 2 mol steam to 1 mol methane, and if heat is supplied to the reactor so that the products reach a temperature of...
Making Hydrogen Gas ​Passing steam over hot carbon produces a mixture of carbon monoxide and hydrogen:...
Making Hydrogen Gas ​Passing steam over hot carbon produces a mixture of carbon monoxide and hydrogen: H2O(g) + C(s) <=> CO(g) + H2(g) The value of Kc for the reaction at 1000°C is 3.0 × 10–2. a. Calculate the equilibrium partial pressures of the products and reactants if PH2O = 0.442 atm    and PCO = 5.0 atm at the start of the reaction. Assume that the carbon is in excess. b. Determine the equilibrium partial pressures of the reactants...
Synthesis gas may be produce by the catalyst reforming of methane with steam. The reactions are:...
Synthesis gas may be produce by the catalyst reforming of methane with steam. The reactions are: CH4 + H2O → CO + 3H2 CO + H2O → CO2 + H2 A small plant is being to produce 1000 mol/s of hydrogen (H2) by the reactions. 280 mol/s of Methane with 100 % of excess steam (excess % relative to the reaction one) are fed to the heat exchanger at 150 °C and heated with superheated vapor. The superheated vapor inlet...
Methanol is synthesized from carbon monoxide and hydrogen in a catalytic reactor. The fresh feed to...
Methanol is synthesized from carbon monoxide and hydrogen in a catalytic reactor. The fresh feed to the process contains 32.0 mol% CO, 64.0 mol% H2 and 4.00 mol% N2. This stream is mixed with a recycle stream in a ratio of 4.00 mol recycle / 1 mol fresh feed to produce the feed to the reactor, which contains 14.0 mol% N2. The reactor effluent goes to a condenser from which two streams emerge: a liquid product stream containing essentially all...
The reaction between carbon monoxide and water is given below: CO(g) + H2O(l) --------> CO2(g) +...
The reaction between carbon monoxide and water is given below: CO(g) + H2O(l) --------> CO2(g) + H2(g) We therefore know that which of the following reactions can also occur? a)  PbCl2(s) ---------->   Pb(s) + Cl2(g) b) CH4(g) + H2O(g) ----------> CO(g) + 3 H2(g) c) CO(g) + 3 H2(g) ------------------> CH4(g) + H2O(g) d) None of the Above
An equilibrium mixture contains 0.450 mol of each of the products (carbon dioxide and hydrogen gas)...
An equilibrium mixture contains 0.450 mol of each of the products (carbon dioxide and hydrogen gas) and 0.200 mol of each of the reactants (carbon monoxide and water vapor) in a 1.00-L container CO(g) + H2O(g) <===> CO2(g) + H2(g) How many moles of carbon dioxide would have to be added at constant temperature and volume to increase the amount of carbon monoxide to 0.300 mol once equilibrium has been reestablished?
An equilibrium mixture contains 0.650 mol of each of the products (carbon dioxide and hydrogen gas)...
An equilibrium mixture contains 0.650 mol of each of the products (carbon dioxide and hydrogen gas) and 0.200 mol of each of the reactants (carbon monoxide and water vapor) in a 1.00-L container. CO(g) + H2O(g) <-----> CO2(g) + H2(g) How many moles of carbon dioxide would have to be added at constant temperature and volume to increase the amount of carbon monoxide to 0.300 mol once equilibrium has been reestablished?
The H2/CO ratio in mixtures of carbon monoxide and hydrogen (called synthesis gas) is increased by...
The H2/CO ratio in mixtures of carbon monoxide and hydrogen (called synthesis gas) is increased by the water-gas shift reaction CO(g)+H2O(g)⇌CO2(g)+H2(g), which has an equilibrium constant Kc= 4.24 at 800 K. Part A) Calculate the equilibrium concentration of CO if CO, H2O, CO2, and H2 are added to a reaction vessel with initial concentrations of 0.180 M. Express your answer to three decimal places and include the appropriate units. [CO]= Part B) Calculate the equilibrium concentration of H2O if CO,...
3. A gas mixture contains 25.1 g of carbon monoxide (CO) and 46.8 g of carbon...
3. A gas mixture contains 25.1 g of carbon monoxide (CO) and 46.8 g of carbon dioxide (CO2). a. (2pts) How many moles of each gas are present? # Moles CO = __________ # Moles CO2 = _________ b. (1pt) What is the mole fraction of carbon monoxide? Ans.____________________ c. (1pt) What is the mole fraction of carbon dioxide? Ans.____________________
Carbon monoxide reacts with air at 1 atm and 1000 K in an exhaust gas reactor....
Carbon monoxide reacts with air at 1 atm and 1000 K in an exhaust gas reactor. The mole fractions of the exhaust gas-air mixture flowing into the reactor are CO, 3%; O2, 7%; N2, 74%; CO2, 6%; H2O, 10%. (a) Calculate the concentration of CO and O2 in gram moles per cm3 in the entering mixture. (b) The rate of reaction is given by d[CO]/dt = -4.3x1011 x [CO][O2]0.25 exp[-E/(RT)] [ ] denotes concentration in gram moles per cm3, E/R...