Question

Using the ideal gas law, determine the percent concentration of hydrogen peroxide in a given sample....

Using the ideal gas law, determine the percent concentration of hydrogen peroxide in a given sample.

Information given:
P = 1.002 atm
V = 0.047 L
n = ?
R = 0.08206
T = 296 K

Hydrogen Peroxide has a density of 1.02 g/mL

The balanced equation of hydrogen peroxide is:
2 H202 ---> 1 H20 + 2 O2

Initial Sample of Hydrogen Peroxide: 5 mL

Homework Answers

Answer #1

According to the ideal gas equation is PV = nRT

Where

T = Temperature = 296 K

P = pressure = 1.002 atm

n = No . of moles = ?

R = gas constant = 0.0821 L atm / mol - K

V= Volume of the gas = 0.047 L

Plug the values we get n = (PV)/(RT)

                                    = (1.002x0.047)/(0.0821x296)

                                    = 1.93x10-3 mol

So concentration of hydrogen peroxie , M = number of moles / volume in L

                                                             = 1.93x10-3 mol / 0.047 L

                                                            = 0.041 mol/L

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
According to the ideal gas law, a 9.939 mol sample of argon gas in a 0.8276...
According to the ideal gas law, a 9.939 mol sample of argon gas in a 0.8276 L container at 500.6 K should exert a pressure of 493.3 atm. What is the percent difference between the pressure calculated using the van der Waals' equation and the ideal pressure? For Ar gas, a = 1.345 L2atm/mol2 and b = 3.219×10-2 L/mol.
According to the ideal gas law, a 10.38 mol sample of krypton gas in a 0.8420...
According to the ideal gas law, a 10.38 mol sample of krypton gas in a 0.8420 L container at 502.0 K should exert a pressure of 507.8 atm. What is the percent difference between the pressure calculated using the van der Waals' equation and the ideal pressure? For Kr gas, a = 2.318 L2atm/mol2 and b = 3.978×10-2 L/mol.
According to the ideal gas law, a 10.08 mol sample of krypton gas in a 0.8488...
According to the ideal gas law, a 10.08 mol sample of krypton gas in a 0.8488 L container at 496.7 K should exert a pressure of 484.0 atm. By what percent does the pressure calculated using the van der Waals' equation differ from the ideal pressure? For Kr gas, a = 2.318 L2atm/mol2 and b = 3.978×10-2 L/mol. ----------------% Hint: % difference = 100 × (P ideal - Pvan der Waals) / P ideal
According to the ideal gas law, a 10.59 mol sample of argon gas in a 0.8229...
According to the ideal gas law, a 10.59 mol sample of argon gas in a 0.8229 L container at 495.4 K should exert a pressure of 523.2 atm. By what percent does the pressure calculated using the van der Waals' equation differ from the ideal pressure? For Ar gas, a = 1.345 L2atm/mol2 and b = 3.219×10-2 L/mol. ??? % Hint: % difference = 100 × (P ideal - Pvan der Waals) / P ideal
The ideal gas law PV=nRT relates pressure P, volume V, temperature T, and number of moles...
The ideal gas law PV=nRT relates pressure P, volume V, temperature T, and number of moles of a gas, n. The gas constant Requals 0.08206 L⋅atm/(K⋅mol) or 8.3145 J/(K⋅mol). The equation can be rearranged as follows to solve for n: n=PVRT This equation is useful when dealing with gaseous reactions because stoichiometric calculations involve mole ratios. A)When heated, calcium carbonate decomposes to yield calcium oxide and carbon dioxide gas via the reaction CaCO3(s)→CaO(s)+CO2(g) What is the mass of calcium carbonate...
Given the decomposition of hydrogen peroxide, calculate the moles of oxygen gas produced from 4.20 mol...
Given the decomposition of hydrogen peroxide, calculate the moles of oxygen gas produced from 4.20 mol of H2O2. 2H2O2(l)→2H2O(l)+O2(g)
Butane, C4H10, is a component of natural gas that is used as fuel for cigarette lighters....
Butane, C4H10, is a component of natural gas that is used as fuel for cigarette lighters. The balanced equation of the complete combustion of butane is 2C4H10(g)+13O2(g)→8CO2(g)+10H2O(l) At 1.00 atm and 23 ∘C, what is the volume of carbon dioxide formed by the combustion of 2.80 g of butane? what is the volume of CO2?The ideal gas law PV=nRT relates pressure P, volume V, temperature T, and number of moles of a gas, n. The gas constant R equals 0.08206...
Use the ideal gas law to calculate the density of each of the following ideal gases...
Use the ideal gas law to calculate the density of each of the following ideal gases at STP in g/L. Use the Ideal gas constant 0.08205 L*atm/K*mol. (Put your answer in 3 significant figures) a. carbon dioxide b. carbon tetrachloride, CCl4 c. methane, CH4
± Stoichiometric Relationships with Gases The ideal gas law PV=nRT relates pressure P, volume V, temperature...
± Stoichiometric Relationships with Gases The ideal gas law PV=nRT relates pressure P, volume V, temperature T, and number of moles of a gas, n. The gas constant Requals 0.08206 L⋅atm/(K⋅mol) or 8.3145 J/(K⋅mol). The equation can be rearranged as follows to solve for n: n=PVRT This equation is useful when dealing with gaseous reactions because stoichiometric calculations involve mole ratios. Part A When heated, calcium carbonate decomposes to yield calcium oxide and carbon dioxide gas via the reaction CaCO3(s)→CaO(s)+CO2(g)...
Using molar volume (stp) or the ideal gas law equation, determine the molar mass , g/mole,...
Using molar volume (stp) or the ideal gas law equation, determine the molar mass , g/mole, of each of the fillowin g. 1- 12.5 g of a gas that has a volume of 2.25 L at stp M = 2- 0.742 g of a gas that has a volume of 835 ml at 1.10 ATM and 19 degrees C. M=
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT