Question

The enthalpy change for converting 10.0 g of ice at -25.0 degrees C to water at...

The enthalpy change for converting 10.0 g of ice at -25.0 degrees C to water at 80.0 degrees C is _______kJ.  The specific heats of ice, water, and steam are 2.09 J/g-K, 4.18 J/g-K, and 1.84 J/g-K, respectively.  For H2O, Delta Hfus=6.01 kJ/mol, and Delta Hvap=40.67 Kj/mol

Please explain steps used as well. Thank you.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
What is the change in enthalpy (∆H) when a 147g of ice at -23.7°C is heated...
What is the change in enthalpy (∆H) when a 147g of ice at -23.7°C is heated to a liquid at 66.5°C? The specific heats of ice, liquid water, and steam are 2.03, 4.18, and 1.84 J/g°C, respectively. For water, ∆Hvap = 40.67 kJ/mol and ∆Hfus = 6.01 kJ/mol.
The enthalpy change for converting 10.0g of ice at -50.0 degrees C to water at 50.0...
The enthalpy change for converting 10.0g of ice at -50.0 degrees C to water at 50.0 degrees C is ______ kJ. The specific heats of ice, water, and steam are 2.09J/g-K, 4.18J/g-K, respectively. For H2O Hfus=6.01kJ/mol and deltaHvap=40.67 kJ/mol. A)12.28 B)4.38 C)3138 D)6.47 E)9.15
Calculate the amount of heat required to change 35.0g ice at -25.0 C to steam at...
Calculate the amount of heat required to change 35.0g ice at -25.0 C to steam at 125 C (Heat of fusion = 333 J/g; heat of vaporization = 2260 J/g; Specific heats: ice = 2.09 J/g*K, water = 4.18 J/g*K, steam = 1.84 J/g*K)
Two 20.0-g ice cubes at –13.0 °C are placed into 275 g of water at 25.0...
Two 20.0-g ice cubes at –13.0 °C are placed into 275 g of water at 25.0 °C. Assuming no energy is transferred to or from the surroundings, calculate the final temperature of the water after all the ice melts. heat capacity of H2O(s) 37.7 J/(mol*k) heat capacity of H2O(l) 75.3 J/(mol*k) enthalpy of fusion of H2O 6.01 kJ/mol
Two 20.0-g ice cubes at –20.0 °C are placed into 285 g of water at 25.0...
Two 20.0-g ice cubes at –20.0 °C are placed into 285 g of water at 25.0 °C. Assuming no energy is transferred to or from the surroundings, calculate the final temperature, Tf, of the water after all the ice melts. heat capacity of H2O(s) is 37.7 J/mol*K heat capacity of H2O(l) is 75.3 J/mol*K enthalpy of fusion of H20 is 6.01 kJ/mol
Please show each step. Thank you. How much heat (in kJ) is evolved in converting 1.00...
Please show each step. Thank you. How much heat (in kJ) is evolved in converting 1.00 mole of steam at 145.0 °C to ice at -50.0 °C? The heat capacity of ice is 2.09 J/g°C and that of steam is 2.09 J/g°C Heat of fusion for water • Hfus = 6.02 kJ/mol  Heat of vaporization for water • Hvap = 40.7 kJ/mol
Calculate the enthalpy change, ΔH, for the process in which 10.3 g of water is converted...
Calculate the enthalpy change, ΔH, for the process in which 10.3 g of water is converted from liquid at 9.4 ∘C to vapor at 25.0 ∘C . For water, ΔHvap = 44.0 kJ/mol at 25.0 ∘C and Cs = 4.18  J/(g⋅∘C) for H2O(l). How many grams of ice at -24.5 ∘C can be completely converted to liquid at 9.8 ∘C if the available heat for this process is 5.03×103 kJ ? For ice, use a specific heat of 2.01 J/(g⋅∘C) and...
Part A Calculate the enthalpy change, ΔH, for the process in which 44.0 g of water...
Part A Calculate the enthalpy change, ΔH, for the process in which 44.0 g of water is converted from liquid at 7.6 ∘C to vapor at 25.0 ∘C . For water, ΔHvap = 44.0 kJ/mol at 25.0 ∘C and s = 4.18 J/(g⋅∘C) for H2O(l) Express your answer numerically in kilojoules. Part B How many grams of ice at -11.0 ∘C can be completely converted to liquid at 9.4 ∘C if the available heat for this process is 5.66×103 kJ...
How much heat is released when 105 g of steam at 100.0°C is cooled to ice...
How much heat is released when 105 g of steam at 100.0°C is cooled to ice at -15.0°C? The enthalpy of vaporization of water is 40.67 kJ/mol, the enthalpy of fusion for water is 6.01 kJ/mol, the molar heat capacity of liquid water is 75.4 J/(mol • °C), and the molar heat capacity of ice is 36.4 J/(mol • °C).
Two 20.0-g ice cubes at –18.0 °C are placed into 245 g of water at 25.0...
Two 20.0-g ice cubes at –18.0 °C are placed into 245 g of water at 25.0 °C. Assuming no energy is transferred to or from the surroundings, calculate the final temperature of the water after all the ice melts. Please show work. Heat capacity of H20(s): 37.7 J/(mol x K) Heat capacity of H20(l): 75.3 J/(mol x K) Enthalpy of fusion of H20: 6.01 kJ/mol