Question

What is the normal boiling point of an aqueous solution that has a freezing point of...

What is the normal boiling point of an aqueous solution that has a freezing point of 1.04 oC. Kf for water 1.86 oC/m (oC-kg/mol). Hint: Calculate the molality from the freezing point depression and use it to calculate the normal boiling point.

Homework Answers

Answer #1

Given:

Freezing point of the solution = 1.04 0C

Kf (water) = 1.86 0C kg /mol

Step 1 : Calculation of molality

Delta Tf = m kf

m = delta Tf / kf

we know

Delta Tf = Freezing point of the solution – freezing point of the solvent.

Delta Tf = 1.04 deg C – 0 deg C

Delta Tf = 1.04 deg C

m = 1.04 deg C / 1.86 deg C kg /mol

= 0.55914 mol/Kg

Now we have to find the normal boiling point f the solution.

We know

Delta Tb = m kb

Here delta Tb is the elevation in boiling point , m is molality , kb is boiling point constant of solvent.

Kb for water = 0.512 deg C kg /mol

Lets plug the value of m and kb to calculate delta Tb

Delta Tb = 0.55914 x 0.512 = 0.28628 deg C

Delta Tb = boiling point of the solution – boiling point of pure solvent ‘

0.28628 deg C = boiling point of the solution – 100 deg C

Boiling point of the solution = 100 + 0.28628 = 100.3 deg C

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The boiling point of an aqueous solution is 101.88 °C. What is the freezing point? Constants...
The boiling point of an aqueous solution is 101.88 °C. What is the freezing point? Constants can be found here. Constants for freezing-point depression and boiling-point elevation calculations at 1 atm: Solvent Formula Kf value* (°C/m) Normal freezing point (°C) Kb value (°C/m) Normal boiling point (°C) water H2O 1.86 0.00 0.512 100.00 benzene C6H6 5.12 5.49 2.53 80.1 cyclohexane C6H12 20.8 6.59 2.92 80.7 ethanol C2H6O 1.99 –117.3 1.22 78.4 carbon tetrachloride CCl4 29.8 –22.9 5.03 76.8 camphor C10H16O...
5. Determine the molal freezing point depression constant (Kf) (in °C⋅kg/mol) of water by using the...
5. Determine the molal freezing point depression constant (Kf) (in °C⋅kg/mol) of water by using the data of three NaCl solutions . Use Equation 3 in the “Background and Procedure” file, the molality values of all solutes from Question s 1 – 3 and the freezing point depression ( ∆T) from Question 4. In your calculation, rewrite the symbol“m ” (the molality) as “mol/kg” so that the molal freezing point depression constant will have the correct unit. Make sure to...
1) What is the freezing point of an aqueous solution made by dissolving 0.139 mole of...
1) What is the freezing point of an aqueous solution made by dissolving 0.139 mole of MgCl2 in 100.0 g of water? Kf = 1.86 oC/m
1.The freezing point of an aqueous solution prepared by adding 0.0100 mol of acetic acid to...
1.The freezing point of an aqueous solution prepared by adding 0.0100 mol of acetic acid to 100. g of water is -0.190 C. The freezing point depression of pure water is 0.000 C, and the freezing point depression constant for water is 1.86 C/m. What is the value for the van't Hoff factor for acetic acid in the aqueous solution. You must show work to support your response. 2. Which of the following aqueous solutions should have the lowest freezing...
To use freezing-point depression or boiling-point elevation to determine the molal concentration of a solution. The...
To use freezing-point depression or boiling-point elevation to determine the molal concentration of a solution. The freezing point, Tf, of a solution is lower than the freezing point of the pure solvent. The difference in freezing point is called the freezing-point depression, ΔTf: ΔTf=Tf(solvent)−Tf(solution) The boiling point, Tb, of a solution is higher than the boiling point of the pure solvent. The difference in boiling point is called the boiling-point elevation, ΔTb: ΔTb=Tb(solution)−Tb(solvent) The molal concentration of the solution, m,...
Calculate the freezing point and boiling point of aqueous 1.9 m CuCl3 given Kf for water...
Calculate the freezing point and boiling point of aqueous 1.9 m CuCl3 given Kf for water = 1.86 deg.C/m; Kb for water = 0.512 deg C/m. Assume theoretical value for i. Show work for credit.
The experimentally measured freezing point of a 1.05 m aqueous solution of AlCl3 is -6.25°C. The...
The experimentally measured freezing point of a 1.05 m aqueous solution of AlCl3 is -6.25°C. The freezing point depression constant for water is Kf = 1.86°C/m. Assume the freezing point of pure water is 0.00°C. Part 1 What is the value of the van't Hoff factor for this solution? Part 2 What is the predicted freezing point if there were no ion clustering in the solution?
Calculate the boiling point of a solution of NaCl that has a freezing point of -0.3720...
Calculate the boiling point of a solution of NaCl that has a freezing point of -0.3720 °C. Assume complete dissociation. Kf water = 1.86 °C/m Kb water = 0.512 °C/m A. 100.1 °C B. 99.1 °C C. 101.1 °C D. 98.9 °C E. 105 °C
What is the molality of NaCl formula units in an aqueous solution if the boiling point...
What is the molality of NaCl formula units in an aqueous solution if the boiling point of the solution is 102.10 °C at 1 atm. (Water has a boiling point elevation constant of 0.51 °C kg/mol.) A) 4.1 m B) 0.49 m C) 8.2 m D) 2.1 m
Calculate the freezing point and boiling point of each of the following solutions: the freezing point...
Calculate the freezing point and boiling point of each of the following solutions: the freezing point of the solution: 174 g of sucrose, C12H22O11, a nonelectrolyte, dissolved in 1.35 kg of water (Kf=1.86∘C) Express your answer using one decimal place.