Question

Suppose that 100.0 g of ice at 0 degrees Celsius are added to 300.0 g of...

Suppose that 100.0 g of ice at 0 degrees Celsius are added to 300.0 g of water at 25.00 degrees Celsius. Is this sufficient ice to lower the temperature of the water to 5.00 degrees Celsius and still have ice remaining? Calculate the energy (heat), which must be removed from water to achieve the desired temperature change, and then prove that there is (is not) sufficient ice to cool the water. Use the specific heat capacity of water (4.184 J/g-*C) and heat of fusion of ice (335 J/g).

Homework Answers

Answer #1

Amount of heat that must be removed from 300.0 g of water to decrease temperature from 25.00 deg ree celsius to 5.00 degree celsius is mass specific heat capacity temperature change. It is .....(1)
Amound of heat required to melt 100.0 g of ice at 0 degree celsius is the product of mass and heat of fusion of ice. It is ....(2)
As (2) > (1), ice is sufficient to lower the temperature of the water to 5.00 degree celsius and still have ice remaining. Also when ice is melted to form water at 0 degree celsius, some heat will be required to increase its temperature from 0 degree celsius to 5 degree celsius.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
100. g of ice at 0 degrees C is added to 300.0 g of water at...
100. g of ice at 0 degrees C is added to 300.0 g of water at 60 degrees C. Assuming no transfer of heat to the surroundings, what is the temperature of the liquid water after all the ice has melted and equilibrium is reached? Specific Heat (ice)= 2.10 J/g C Specific Heat (water)= 4.18 J/g C Heat of fusion = 333 J/g Heat of vaporization= 2258 J/g
803 cal of heat is added to 5.00 g ice at –20.0 °C. What is the...
803 cal of heat is added to 5.00 g ice at –20.0 °C. What is the final temperature of the water? SPecific heat H2O(s)= 2.087 J/(g*C) Specific heat H2O(l)=4.184 J/(g*C) Heat of fusion= 333.6 J/g
The heat of fusion of ice is 335 J/g. When 40.968 g of ice at 0øC...
The heat of fusion of ice is 335 J/g. When 40.968 g of ice at 0øC is added to 222.298 g of water at 67.978øC, what is the final temperature?
a 25.0g piece of aluminum (molar heat capacity of 24.03 J/g degrees Celsius) is heated to...
a 25.0g piece of aluminum (molar heat capacity of 24.03 J/g degrees Celsius) is heated to 82.4 degrees Celsius and dropped into a calorimeter containing water (specific heat capacity of water is 4.18 J/g degrees Celsius) initially at 22.3 degrees Celsius. The final temperature of the water is 24.98 degrees Celsius. Calculate the mass of water in the calorimeter.
1.000 g of water is initially in the form of ice at -20.00 degrees Celsius when...
1.000 g of water is initially in the form of ice at -20.00 degrees Celsius when 1924 J of heat is added. Find the final state of water. Cice = 2220 J/kgc Cwater = 4190 J/kgc, Lf = 333.0 Kj/kg, Lv = 2256 kj/kg
How much heat is released when 105 g of steam at 100.0°C is cooled to ice...
How much heat is released when 105 g of steam at 100.0°C is cooled to ice at -15.0°C? The enthalpy of vaporization of water is 40.67 kJ/mol, the enthalpy of fusion for water is 6.01 kJ/mol, the molar heat capacity of liquid water is 75.4 J/(mol • °C), and the molar heat capacity of ice is 36.4 J/(mol • °C).
A 20.0-g sample of ice at 210.08C is mixed with 100.0 g water at 80.08C. Calculate...
A 20.0-g sample of ice at 210.08C is mixed with 100.0 g water at 80.08C. Calculate the final temperature of the mixture assuming no heat loss to the surroundings. The heat capacities of H 2 O(s) and H 2 O(l) are 2.03 and 4.18 J/g ? 8C, respectively, and the enthalpy of fusion for ice is 6.02 kJ/mol.
A coffee-cup calorimeter initially contains 125 g water at 24.2 degrees celsius. Ammonium Nitrate (10.5 g),...
A coffee-cup calorimeter initially contains 125 g water at 24.2 degrees celsius. Ammonium Nitrate (10.5 g), also at 24.2 degree celsius, is added to the water, and after the ammonium nitrate dissolves, the final temperature is 18.3 degrees celsius.What is the heat of solution of ammonium nitrate in kj/mol? Assume that the specific heat capacity of the solution is 4.18 J/Cg and that no heat is transferred to the surrounds or to the calorimeter.
A 24 g block of ice is cooled to −63◦C. It is added to 572 g...
A 24 g block of ice is cooled to −63◦C. It is added to 572 g of water in a 98 g copper calorimeter at a temperature of 30◦C. Find the final temperature. The specific heat of copper is 387 J/kg ·◦C and of ice is 2090 J/kg ·◦C. The latent heat of fusion of water is 3.33 × 105 J/kg and its specific heat is 4186 J/kg·◦C. Answer in units of ◦C.
A 31 g block of ice is cooled to −90◦C. It is added to 591 g...
A 31 g block of ice is cooled to −90◦C. It is added to 591 g of water in an 65 g copper calorimeter at a temperature of 26◦C. Find the final temperature. The specific heat of copper is 387 J/kg · ◦C and of ice is 2090 J/kg · ◦C . The latent heat of fusion of water is 3.33 × 105 J/kg and its specific heat is 4186 J/kg · ◦C . Answer in units of ◦C.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT