What is the molar mass of an element that crystallizes in a body-centered cubic unit cell with a density equal to 0.971 g/cm3 and radius of 1.853 A?
edge length of the unit cell
Calculate the value for 4r (refer to the above diagram):
radius for barium = 1.853 A or 185.3 pm
4r = 741.2 pm
2) Apply the Pythagorean Theorem:
d2 + (d√2)2 = (741.2)2
3d2 = 549377
d2 = 183125.813333. . .
d = 427.9 pm
Convert pm to cm:
427.9 pm x 1 cm/1010 pm = 330.6 x 10¯10 cm = 4.279 x 10¯8 cm
Calculate the volume of the unit cell:
(4.279 x 10¯8 cm)3 = 7.8365 x 10¯23 cm3
Calculate mass of the 2 atoms in the body-centered cubic unit cell:
0.971 g/cm3 times 7.8365 x 10¯23 cm3 = 7.6075 x 10¯23 g
The mass of one atom :
7.6075 x 10¯23 g / 2 = 3.8037 x 10¯23 g
5) The atomic weight in g/mol:
3.8037 x 10¯23 g times 6.022 x 1023 mol¯1 = 22.91 g/mol
Get Answers For Free
Most questions answered within 1 hours.