Question

The decomposition of N2O to N2 and O2 is a first-order reaction. At 730°C the half-life...

The decomposition of N2O to N2 and O2 is a first-order reaction. At 730°C the half-life of the reaction is 3.58 × 103 min. If the initial pressure of N2O is 4.50 atm at 730°C, calculate the total gas pressure after one half-life. Assume that the volume remains constant.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The decomposition of N2O to N2 and O2 is a first-order reaction. At 730°C, the rate...
The decomposition of N2O to N2 and O2 is a first-order reaction. At 730°C, the rate constant of the reaction is 1.94 × 10-4 min-1. If the initial pressure of N2O is 4.70 atm at 730°C, calculate the total gas pressure after one half-life. Assume that the volume remains constant.
The decomposition of N2O to N2 and O2 is a first-order reaction. At 730°C, the rate...
The decomposition of N2O to N2 and O2 is a first-order reaction. At 730°C, the rate constant of the reaction is 1.94 × 10-4 min-1. If the initial pressure of N2O is 4.70 atm at 730°C, calculate the total gas pressure after one half-life. Assume that the volume remains constant.
The half-life for the first-order decomposition of sulfuryl chloride at 320 °C is 8.75 hours. SOCl2...
The half-life for the first-order decomposition of sulfuryl chloride at 320 °C is 8.75 hours. SOCl2 (g) → SO2 (g) + Cl2 (g) a. What is the value of the rate constant k (in hours)? b. What is the pressure of sulfuryl chloride 3.00 hours after the start of the reaction if its initial pressure is 722 mmHg? c. How long after the start of the reaction will the pressure of sulfuryl chloride become 125 mmHg?
The decomposition of A to B is a first-order reaction with a half-life of 85.9 min...
The decomposition of A to B is a first-order reaction with a half-life of 85.9 min when the initial concentration of A is 0.483 M: A → 2B How long will it take for this initial concentration of A to decrease by 23.0%? PLEASE HURRY I DONT HAVE MUCH TIME TO ANSWER THIS
The decomposition of chloroform at 504°C is first order with a half-life of 1570 seconds. What...
The decomposition of chloroform at 504°C is first order with a half-life of 1570 seconds. What percent of any initial amount of chloroform remains after 1.25 hours?
The rate constant for the first-order decomposition of N2O5 by the reaction 2 N2O5 (g) ...
The rate constant for the first-order decomposition of N2O5 by the reaction 2 N2O5 (g)  4 NO2(g) + O2(g) is k, = 3.38 x 10-5 s -1 at 25 C. What is the half-life of N2O5? What will be the partial pressure, initially 500 Torr, at ( a) 50 s; (b) 20 min, (c) 2 hr after initiation of the reaction?
The rate constant for the first-order decomposition of a compound A in the reaction 2 A...
The rate constant for the first-order decomposition of a compound A in the reaction 2 A  P is k, =3.56 x 10-7 s-1 at 25°C. What is the half-life of A? What will be the pressure, initially 33.0 kPa at (a) 50 s, (b) 20 min, (c) 20 h after initiation of the reaction?
The first order rate constant of the gas-phase decomposition of dimethyl ether, (CH3 )2O(g) --> CH4...
The first order rate constant of the gas-phase decomposition of dimethyl ether, (CH3 )2O(g) --> CH4 (g)+ H2(g)+ CO(g) is 3.2 *10-4 s-1 at 450 C . The reaction is carried out in a constant volume container. Initially, only dimethyl ether is present, and the pressure is 0.350 atm. What is the pressure after 8.0 min? Assume ideal gas behavior.
the decomposition of hydrogen peroxide H2O2, is first-order reaction. the half-life of of reaction is 17.0minutes....
the decomposition of hydrogen peroxide H2O2, is first-order reaction. the half-life of of reaction is 17.0minutes. a.) What is the rate constant of the reaction? b.) If you had a bottle of H2O2, how long would it take for 80% to decompose?
Consider the decomposition of nitrous oxide, laughing gas, 2 N2O (g) = 2 N2(g) + O2(g)...
Consider the decomposition of nitrous oxide, laughing gas, 2 N2O (g) = 2 N2(g) + O2(g) At 25⁰C, Kc is 7.3 x 1034 (a) Based on the information given, what can you say about the rate of decomposition of the reaction? (b) Based on the information given, does nitrous oxide have a tendency to decompose into nitrogen gas and oxygen? (c) What is the Kp for the reaction at 25⁰C?