Question

Strong base is dissolved in 545 mL of 0.200 M weak acid (Ka = 4.02 ×...

Strong base is dissolved in 545 mL of 0.200 M weak acid (Ka = 4.02 × 10-5) to make a buffer with a pH of 4.11. Assume that the volume remains constant when the base is added.

a) Calculate the pKa value of the acid and determine the number of moles of acid initially present.

b) When the reaction is complete, what is the concentration ratio of conjugate base to acid?

c) How many moles of strong base were initially added?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Strong base is dissolved in 645 mL of 0.400 M weak acid (Ka = 4.91 ×...
Strong base is dissolved in 645 mL of 0.400 M weak acid (Ka = 4.91 × 10-5) to make a buffer with a pH of 4.11. Assume that the volume remains constant when the base is added. Calculate the pKa value of the acid and determine the number of moles of acid initially present. When the reaction is complete, what is the concentration ratio of conjugate base to acid? How many moles of strong base were initially added?
1. Strong base is dissolved in 565 mL of 0.400 M weak acid (Ka = 3.85...
1. Strong base is dissolved in 565 mL of 0.400 M weak acid (Ka = 3.85 × 10-5) to make a buffer with a pH of 4.07. Assume that the volume remains constant when the base is added. a. Calculate the pKa value of the scid and determine the number of moles of acid initially present. b. When the reaction is complete, what is the concentration ratio of conjugate base to acid? c. How many moles of strong base were...
33 . Strong base is dissolved in 565 L of 0.600 M weak acid (?a=3.30×10−5 M)(Ka=3.30×10−5...
33 . Strong base is dissolved in 565 L of 0.600 M weak acid (?a=3.30×10−5 M)(Ka=3.30×10−5 M) to make a buffer with a pH of 4.08. Assume that the volume remains constant when the base is added. HA(aq)+OH−(aq)⟶H2O(l)+A−(aq) Calculate the pKa value of the acid and determine the number of moles of acid initially present. When the reaction is complete, what is the concentration ratio of conjugate base to acid? How many moles of strong base were initially added?
QUESTION 1 Consider a solution prepared by mixing 10.0 mL of 0.200 M formic acid (HCHO2,...
QUESTION 1 Consider a solution prepared by mixing 10.0 mL of 0.200 M formic acid (HCHO2, pKa = 3.75) and 5.0 mL of 0.100 M NaOH. What is the value of Ka for formic acid? Ka = ___ M QUESTION 2 Before any reaction occurs, what is present in the solution? a) Strong acid + strong base b) Strong acid + weak base c) Weak acid + strong base d) Weak acid + weak base QUESTION 3 Before considering any...
You are titrating 0.200 L of a 0.400M monoprotic weak acid with a strong base that...
You are titrating 0.200 L of a 0.400M monoprotic weak acid with a strong base that is 0.800 M. Ka= 4.8x10^-6 a) At first, there is 0.200 L of 0.400M acid and no strong base. What is the pH? b) After 35.0 mL of 0.800 M strong base is added, what is the pH? c) How many mL of 0.800 M strong base must be added to reach the half equivalence point? d) What is the pH of the equivalence...
When a solution contains a weak acid and its conjugate base or a weak base and...
When a solution contains a weak acid and its conjugate base or a weak base and its conjugate acid, it will be a buffer solution. Buffers resist change in pH following the addition of acid or base. A buffer solution prepared from a weak acid (HA) and its conjugate base (A−) is represented as HA(aq)⇌H+(aq)+A−(aq) The buffer will follow Le Châtelier's principle. If acid is added, the reaction shifts to consume the added H+, forming more HA. When base is...
A 25.0 mL of a weak acid is titrated with a strong base (0.1 M). Calculate...
A 25.0 mL of a weak acid is titrated with a strong base (0.1 M). Calculate the pH of the solution during the titration if the weak acid concentration is 0.10 M and its Ka = 1.8 x 10-5 and 10.0 mL of base has been added.
± pH Changes in Buffers When a solution contains a weak acid and its conjugate base...
± pH Changes in Buffers When a solution contains a weak acid and its conjugate base or a weak base and its conjugate acid, it will be a buffer solution. Buffers resist change in pH following the addition of acid or base. A buffer solution prepared from a weak acid (HA) and its conjugate base (A−) is represented as HA(aq)⇌H+(aq)+A−(aq) The buffer will follow Le Châtelier's principle. If acid is added, the reaction shifts to consume the addedH+, forming more...
500.0 mL of 0.140 M NaOH is added to 615 mL of 0.200 M weak acid...
500.0 mL of 0.140 M NaOH is added to 615 mL of 0.200 M weak acid (Ka = 4.06 × 10-5). What is the pH of the resulting buffer?
500.0 mL of 0.110 M NaOH is added to 585 mL of 0.200 M weak acid...
500.0 mL of 0.110 M NaOH is added to 585 mL of 0.200 M weak acid (Ka = 7.30 × 10-5). What is the pH of the resulting buffer?