Question

Five grams of water is placed in a variable volume piston. What is the volume of...

Five grams of water is placed in a variable volume piston. What is the volume of the pure system when 50% and 75% have been evaporated at (i) 30°C, (ii) 50°C? Use the ideal gas law to model the vapor phase and show that the volume occupied by liquid is negligible compared to the volume occupied by vapor.

Homework Answers

Answer #1

PV = nRT

therefore, volume V = nRT/ P

when 50% is evaporated, then mass of vapor = 2.5 g

therefore n = 2.5 /18

so at 30oC, V = 2.5 x 8.2 x 10-2 x (273+30)/ 18 x 1 = 3.45 L [taking P = 1 atm.]

at 50oC , V = 2.5 x 8.2 x 10-2 x (273+50)/ 18 x 1 = 3.68 L

when 75% is evaporated, then mass of vapor = 3.75 g

therefore n = 3.75 /18

so at 30oC, V = 3.75 x 8.2 x 10-2 x (273+30)/ 18 x 1 = 5.18 L [taking P = 1 atm.]

at 50oC , V = 3.75 x 8.2 x 10-2 x (273+50)/ 18 x 1 = 5.52 L

These volumes are large when compared to volume of liquid, where 5 g of water will occupy merely 5 x 10-3 L.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A certain amount of H2O vapor (gas) is condensed isothermally and reversibly to liquid water at...
A certain amount of H2O vapor (gas) is condensed isothermally and reversibly to liquid water at 100ºC, where the liquid occupied a volume of 675 cm3 . The standard enthalpy of vaporization of water at 100ºC is 40.66 kJ mol-1, the density of liquid water at 100ºC is 0.958 g/cm3 . Find w, q, U, and H for this condensation process. (You may assume that the volume of liquid H2O is negligible compared to that of H2O vapor, and that...
A certain amount of H2O vapor (gas) is condensed isothermally and reversibly to liquid water at...
A certain amount of H2O vapor (gas) is condensed isothermally and reversibly to liquid water at 100oC, where the liquid occupied a volume of 675 cm3. The standard enthalpy of vaporization of water at 100oC is 40.66 kJ mol-1, the density of liquid water at 100oC is 0.958 g/cm3. Find w, q, U, and H for this condensation process. (You may assume that the volume of liquid H2O is negligible compared to that of H2O vapor, and that the vapor...
What minimum amount of H2O (in grams) must be added to an empty, sealed 1.00 L...
What minimum amount of H2O (in grams) must be added to an empty, sealed 1.00 L container with normal atmospheric pressure (1.00 atm) to ensure that there is at least some liquid water in it, in addition to the vapor, after the container is heated to 100°C and equilibrium is established. Assume that water vapor approximately obeys the ideal gas law.
What minimum amount of H2O (in grams) must be added to an empty, sealed 1.00 L...
What minimum amount of H2O (in grams) must be added to an empty, sealed 1.00 L container with normal atmospheric pressure (1.00 atm) to ensure that there is at least some liquid water in it, in addition to the vapor, after the container is heated to 100°C and equilibrium is established. Assume that water vapor approximately obeys the ideal gas law.
Water undergoes a constant‐volume process within a piston–cylinder assembly from saturated liquid at 4 bar to...
Water undergoes a constant‐volume process within a piston–cylinder assembly from saturated liquid at 4 bar to a final pressure of 50 bar. Kinetic and potential energy effects are negligible. Determine the work and the heat transfer, each in kJ per kg of water. [7 points]
A cylinder-piston device contains a mass of 2.4 kg of liquid-vapor mixture water with 70% titer...
A cylinder-piston device contains a mass of 2.4 kg of liquid-vapor mixture water with 70% titer at 50 bar. The system goes through a process of cooling to constant pressure until the obtaining compressed liquid with 14 ºC of subcooling. Evaluate: (i) The initial and final temperatures of the process. (ii) The specific enthalpy at the beginning of the process. (iii) The change in total volume during the process. (iv) The amount of heat removed from the system during the...
A piston cylinder device containing 0.5 kg of water has initial volume of 0.5L. The device...
A piston cylinder device containing 0.5 kg of water has initial volume of 0.5L. The device starts and goes through a Carnot cycle and generates 500.3 kJ work. If the maximum temperature that water will reach is 1.5 times the minimum temperature of water and during heat rejection process, water goes from saturated vapor to saturated liquid phase Find: 1. QH & QL for this cycle 2. TH & TL for this cycle . 3. Maximum and minimum pressures that...
Using Raoult's law for water and Henry's law for nitrogen, calculate the pressure and gas-phase composition...
Using Raoult's law for water and Henry's law for nitrogen, calculate the pressure and gas-phase composition (mole fractions) in a system containing a liquid that is 1.200 mole% N2 and 98.80 mole% water in equilibrium with nitrogen gas and water vapor at 50.0°C. The Henry's law constant for nitrogen in water is recommended by NIST to be well represented by kH = 0.000625 exp[1300 (1/T – 1/298.15)] mol N2 / (kg H2O bar), where T is measured in Kelvin a)...
A piston-cylinder device initially contains 75 g of saturated water vapor at 340 kPa . A...
A piston-cylinder device initially contains 75 g of saturated water vapor at 340 kPa . A resistance heater is operated within the cylinder with a current of 0.6 A from a 300 V source until the volume doubles. At the same time a heat loss of 7 kJ occurs. Part A)Determine the final temperature (T2). Part B)Determine the duration of the process. Part C) What-if scenario: What is the final temperature if the piston-cylinder device initially contains saturated liquid water?
If 1.00 mL of water is placed in a 5.00 L closed flask at 26°C, what...
If 1.00 mL of water is placed in a 5.00 L closed flask at 26°C, what volume of water would remain as liquid after equilibrium is allowed to establish between the liquid water and the water vapor in the flask ? (The vapor pressure of water at 26°C is 25.2 torr, and the density of water at 26°C is 1.00 g/mL.)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT