Question

Thermodynamics Question A Joule expansion refers to the expansion of a gas from volume V1 to...

Thermodynamics Question

A Joule expansion refers to the expansion of a gas from volume V1 to volume V2against no applied pressure, and is sometimes also called a free expansion. There is no work done, because the P of -PdV is zero. By insulating the system, this process can be done adiabatically, so there is no change in heat. For an ideal gas, the adiabatic process is also isothermal, so there is no change in thermodynamic energy, ∆U = 0 (which is not surprising, since both q and w are 0). Because entropy is a state variable, the change of the system's entropy can be calculated using the most convenient means possible, which would be through a reversible process, and is just given by the usual expression for a reversible isothermal expansion, ∆S= nR ln(V2/V1). Thus, even though there is no heat flow, there is certainly an increase in entropy of the system.

Explain how this overall result is consistent with the 2nd Law of Thermodynamics. Is this process reversible or irreversible? Explain your reasoning.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A Joule expansion refers to the expansion of a gas from volume V1 to volume V2...
A Joule expansion refers to the expansion of a gas from volume V1 to volume V2 against no applied pressure, and is sometimes also called a free expansion. There is no work done, because the P of -PdV is zero. By insulating the system, this process can be done adiabatically, so there is no change in heat. For an ideal gas, the adiabatic process is also isothermal, so there is no change in thermodynamic energy, ∆U = 0 (which is...
Suppose 4.00 mol of an ideal gas undergoes a reversible isothermal expansion from volume V1 to...
Suppose 4.00 mol of an ideal gas undergoes a reversible isothermal expansion from volume V1 to volume V2 = 8V1 at temperature T = 300 K. Find (a) the work done by the gas and (b) the entropy change of the gas. (c) If the expansion is reversible and adiabatic instead of isothermal, what is the entropy change of the gas?
Calculate the total change of entropy for an ideal monatomic gas expanding from a volume V...
Calculate the total change of entropy for an ideal monatomic gas expanding from a volume V into a volume 2V via: i) Free expansion ii) Quasi-static isothermal expansion iii) Quasi-static adiabatic expansion; iv) Do the results of (iii) surprise you? Comment on what these results mean in terms of reversible and irreversible processes.
An ideal gas at 300 K has a volume of 15 L at a pressure of...
An ideal gas at 300 K has a volume of 15 L at a pressure of 15 atm. Calculate the: (1)the final volume of the system, (2) the work done by the system, (3) the heat entering thesystem, (4) the change in internal energy when the gas undergoes a.- A reversible isothermal expansion to a pressure of 10 atm b.- A reversible adiabatic expansion to a pressure of 10 atm.
True or False? a. A gas process that is not reversible can be drawn on a...
True or False? a. A gas process that is not reversible can be drawn on a PV diagram b. The work done by the gas is given by the integral of PdV for any reversible process. c. The heat added to a system does not depend on the path taken or whether the process is reversible or not. d. The internal energy of a system is only affected by heat and work. e. In an isothermal process for an ideal...
Exactly 1.27 moles of an ideal gas undergoes an isothermal expansion (T = 259 K) from...
Exactly 1.27 moles of an ideal gas undergoes an isothermal expansion (T = 259 K) from state A to state B and then returns to state A by another process. The volume of the gas in state B is three times its initial volume. (a) For the process AB, find the work done by the gas and its change in entropy. work = J change in entropy = J/K (b) Find the gas's change in entropy for the process BA....
1 mole of a gas undergoes a mechanically reversible isothermal expansion from an initial volume 1...
1 mole of a gas undergoes a mechanically reversible isothermal expansion from an initial volume 1 liter to a final volume 10 liter at 25oC. In the process, 2.3 kJ of heat is absorbed in the system from the surrounding. The gas follows the following formula: V=RTP+b where V is the molar specific volume, and Tand Pare temperature (abosolute) and gas pressure respectively. Given R= 8.314 J/(mol.K) and b= 0.0005 m3. Evaluate the following a) Work (include sign) b) Change...
Ten liters of a monoatomic ideal gas at 25o C and 10 atm pressure are expanded...
Ten liters of a monoatomic ideal gas at 25o C and 10 atm pressure are expanded to a final pressure of 1 atm. The molar heat capacity of the gas at constant volume, Cv, is 3/2R and is independent of temperature. Calculate the work done, the heat absorbed, and the change in U and H for the gas if the process is carried out (1) isothermally and reversibly, and (2) adiabatically and reversibly. Having determined the final state of the...
7. 1.55 moles of Argon gas undergo an isothermal reversible expansion from an initial volume of...
7. 1.55 moles of Argon gas undergo an isothermal reversible expansion from an initial volume of 5.00 L to 105. L at 300 K. Calculate the work done during this process using: (a) the ideal gas equation, and (b) the van der Waals equation of state. Van der Waals parameters for Ar are available in the back of the book. Compare the two results, what percentage of the work done by the van der Waals gas arises due to having...
Calculate the change in entropy for one mole of ideal gas which expands from an initial...
Calculate the change in entropy for one mole of ideal gas which expands from an initial volume of 2 L and initial temperature of 500 K to a final volume of 6 L under the following conditions. P(initial) refers to the pressure when T(initial)= 500K, V(initial)= 2 L. a) Irreversible expansion against a constant pressure of Pinitial/2 b) Irreversible expansion against a vacuum...a 'free expansion'. c) Adiabatic irreversible expansion against a constant pressure of Pfinal d) Adiabatic reversible expansion
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT
Active Questions
  • Computer equipment was acquired at the beginning of the year at a cost of $51,500 that...
    asked 1 minute ago
  • For flow-through entities with individual owners, how many times is flow-through entity income taxed, who pays...
    asked 3 minutes ago
  • Once a quarter, every six months, or annually, each salesperson should estimate the buying potential of...
    asked 3 minutes ago
  • A city has 12 districts. An election is coming up for the city metro council (1...
    asked 3 minutes ago
  • Insert the correct predecessor function using Microsoft Project for the following question: "Work may not start...
    asked 29 minutes ago
  • Describe adolescent egocentrism. How does the “imaginary audience” and “the personal fable” influence the adolescent’s self-esteem?...
    asked 33 minutes ago
  • The future seems to favor e-businesses. There is truly a paradigm shift, even brick and mortar...
    asked 38 minutes ago
  • Sulfuric acid dissolves aluminum metal according to the following reaction: 2Al(s)+3H2SO4(aq)→Al2(SO4)3(aq)+3H2(g) Suppose you wanted to dissolve...
    asked 40 minutes ago
  • Describe Lev Vygotsky’s Theory of Cognitive Development. Include a description of the zone of proximal development...
    asked 51 minutes ago
  • How many 6-member committees can be formed from 8 girls and 9 boys if the following...
    asked 51 minutes ago
  • MINIMIZATION APPLICATIONS 3) An oil company has two refineries. Each day, Refinery A produces 200 barrels...
    asked 1 hour ago
  • Answer the within-subjects ANOVA questions using the data below. Use α = 0.01. 1 2 3...
    asked 1 hour ago