Question

An ideal gas at 300 K has a volume of 15 L at a pressure of...

An ideal gas at 300 K has a volume of 15 L at a pressure of 15 atm. Calculate the:

(1)the final volume of the system,

(2) the work done by the system,

(3) the heat entering thesystem,

(4) the change in internal energy when the gas undergoes

a.- A reversible isothermal expansion to a pressure of 10 atm

b.- A reversible adiabatic expansion to a pressure of 10 atm.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose 4.00 mol of an ideal gas undergoes a reversible isothermal expansion from volume V1 to...
Suppose 4.00 mol of an ideal gas undergoes a reversible isothermal expansion from volume V1 to volume V2 = 8V1 at temperature T = 300 K. Find (a) the work done by the gas and (b) the entropy change of the gas. (c) If the expansion is reversible and adiabatic instead of isothermal, what is the entropy change of the gas?
A sample consisting of 2.5 moles of ideal gas (Cp,m =20.8 J/K) is initially at 3.25...
A sample consisting of 2.5 moles of ideal gas (Cp,m =20.8 J/K) is initially at 3.25 atm and 300 K. It undergoes reversible adiabatic expansion until its pressure reaches 2.5 atm. Calculate the final volume, the final temperature, and the work done.
One mole of ideal gas initially at 300 K is expanded from an initial pressure of...
One mole of ideal gas initially at 300 K is expanded from an initial pressure of 10 atm to a final pressure of 1 atm. Calculate ΔU, q, w, ΔH, and the final temperature T2 for this expansion carried out according to each of the following paths. The heat capacity of an ideal gas is cV=3R/2. 1. A reversible adiabatic expansion.
A cylinder contains an ideal gas at the temperature of 300 K and is closed by...
A cylinder contains an ideal gas at the temperature of 300 K and is closed by a movable piston. The gas, which is initially at a pressure of 3 atm occupying a volume of 30 L, expands isothermally to a volume of 80 L. The gas is then compressed isobarically, returning to its initial volume of 30 L. Calculate the work done by gas: a) in isothermal expansion; b) in isobaric compression, c) in the whole process; and d) Calculate...
Ten liters of a monoatomic ideal gas at 25o C and 10 atm pressure are expanded...
Ten liters of a monoatomic ideal gas at 25o C and 10 atm pressure are expanded to a final pressure of 1 atm. The molar heat capacity of the gas at constant volume, Cv, is 3/2R and is independent of temperature. Calculate the work done, the heat absorbed, and the change in U and H for the gas if the process is carried out (1) isothermally and reversibly, and (2) adiabatically and reversibly. Having determined the final state of the...
A 0.520-mol sample of an ideal diatomic gas at 432 kPa and 324 K expands quasi-statically...
A 0.520-mol sample of an ideal diatomic gas at 432 kPa and 324 K expands quasi-statically until the pressure decreases to 144 kPa. Find the final temperature and volume of the gas, the work done by the gas, and the heat absorbed by the gas if the expansion is the following. a) isothermal and adiabatic final temperature volume of the gas wrok done by the gas heat absorbed? K=?, L=?, work done?, heat absorb?
A 0.505-mol sample of an ideal diatomic gas at 408 kPa and 309 K expands quasi-statically...
A 0.505-mol sample of an ideal diatomic gas at 408 kPa and 309 K expands quasi-statically until the pressure decreases to 150 kPa. Find the final temperature and volume of the gas, the work done by the gas, and the heat absorbed by the gas if the expansion is the following. (a) isothermal final temperature K volume of the gas L work done by the gas J heat absorbed J (b) adiabatic final temperature K volume of the gas L...
A Joule expansion refers to the expansion of a gas from volume V1 to volume V2...
A Joule expansion refers to the expansion of a gas from volume V1 to volume V2 against no applied pressure, and is sometimes also called a free expansion. There is no work done, because the P of -PdV is zero. By insulating the system, this process can be done adiabatically, so there is no change in heat. For an ideal gas, the adiabatic process is also isothermal, so there is no change in thermodynamic energy, ∆U = 0 (which is...
2.)1.0 mol sample of an ideal monatomic gas originally at a pressure of 1 atm undergoes...
2.)1.0 mol sample of an ideal monatomic gas originally at a pressure of 1 atm undergoes a 3-step process as follows:                  (i)         It expands adiabatically from T1 = 588 K to T2 = 389 K                  (ii)        It is compressed at constant pressure until its temperature reaches T3 K                  (iii)       It then returns to its original pressure and temperature by a constant volume process. A). Plot these processes on a PV diagram B). Determine the temperature T3 C)....
Thermodynamics Question A Joule expansion refers to the expansion of a gas from volume V1 to...
Thermodynamics Question A Joule expansion refers to the expansion of a gas from volume V1 to volume V2against no applied pressure, and is sometimes also called a free expansion. There is no work done, because the P of -PdV is zero. By insulating the system, this process can be done adiabatically, so there is no change in heat. For an ideal gas, the adiabatic process is also isothermal, so there is no change in thermodynamic energy, ∆U = 0 (which...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT