Question

We can use Hess's law to calculate enthalpy changes that cannot be measured. One such reaction...

We can use Hess's law to calculate enthalpy changes that cannot be measured. One such reaction is the conversion of methane to ethylene:
2CH4(g)⟶C2H4(g)+2H2(g)

Part A

Calculate the ΔH∘ for this reaction using the following thermochemical data:
CH4(g)+2O2(g)⟶CO2(g)+2H2O(l) ΔH∘=−890.3kJ
C2H4(g)+H2(g)⟶C2H6(g) ΔH∘=−136.3kJ
2H2(g)+O2(g)⟶2H2O(l) ΔH∘=−571.6kJ
2C2H6(g)+7O2(g)⟶4CO2(g)+6H2O(l) ΔH∘=−3120.8kJ

Express your answer to four significant figures and include the appropriate units.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
We can use Hess's law to calculate enthalpy changes that cannot be measured. One such reaction...
We can use Hess's law to calculate enthalpy changes that cannot be measured. One such reaction is the conversion of methane to ethylene: 2CH4(g)⟶C2H4(g)+2H2(g) Calculate the ΔH∘ for this reaction using the following thermochemical data: CH4(g)+2O2(g)⟶CO2(g)+2H2O(l) ΔH∘=−890.3kJ C2H4(g)+H2(g)⟶C2H6(g) ΔH∘=−136.3kJ 2H2(g)+O2(g)⟶2H2O(l) ΔH∘=−571.6kJ 2C2H6(g)+7O2(g)⟶4CO2(g)+6H2O(l ΔH∘=−3120.8kJ
Calculate the ΔH∘ for this reaction using the following thermochemical data: CH4(g)+2O2(g)⟶CO2(g)+2H2O(l) ΔH∘=−890.3kJ C2H4(g)+H2(g)⟶C2H6(g) ΔH∘=−136.3kJ 2H2(g)+O2(g)⟶2H2O(l)...
Calculate the ΔH∘ for this reaction using the following thermochemical data: CH4(g)+2O2(g)⟶CO2(g)+2H2O(l) ΔH∘=−890.3kJ C2H4(g)+H2(g)⟶C2H6(g) ΔH∘=−136.3kJ 2H2(g)+O2(g)⟶2H2O(l) ΔH∘=−571.6kJ 2C2H6(g)+7O2(g)⟶4CO2(g)+6H2O(l)
Use Hess's Law to calculate the enthalpy of reaction, ΔH rxn, for the reaction in bold...
Use Hess's Law to calculate the enthalpy of reaction, ΔH rxn, for the reaction in bold below given the following chemical steps and their respective enthalpy changes. Show ALL work! 2 C(s) + H2(g) → C2H2(g) ΔH°rxn = ? 1. C2H2(g) + 5/2 O2(g) → 2CO2 (g) + H2O (l) ΔH°rxn = -1299.6 kJ 2. C(s) + O2(g) → CO2 (g) ΔH°rxn = -393.5 kJ 3. H2(g) + ½ O2(g) → H2O (l) ΔH°rxn = -285.8 kJ
Use Hess's Law to calculate the enthalpy change for the reaction: GdO3 + 3H2(g) -> Gd(s)...
Use Hess's Law to calculate the enthalpy change for the reaction: GdO3 + 3H2(g) -> Gd(s) + H2O (g) from the following data: 2Gd(s) + 3O2 --> 2GdO3(s)   ^H=-685.4kJ 2H2 (g) + O2 (g) --> 2H2O(g)     ^H= -47.8kJ
Hess's Law Given the following data: 2C(s) + 2H2(g) + O2(g) → CH3OCHO(l) ΔH°=-366.0 kJ CH3OH(l)...
Hess's Law Given the following data: 2C(s) + 2H2(g) + O2(g) → CH3OCHO(l) ΔH°=-366.0 kJ CH3OH(l) + O2(g) → HCOOH(l) + H2O(l) ΔH°=-473.0 kJ C(s) + 2H2(g) + 1/2O2(g) → CH3OH(l) ΔH°=-238.0 kJ H2(g) + 1/2O2(g) → H2O(l) ΔH°=-286.0 kJ calculate ΔH° for the reaction: HCOOH(l) + CH3OH(l) → CH3OCHO(l) + H2O(l)
Use Hess's Law to calculate the enthalpy change for recovering tungsten from its oxide using the...
Use Hess's Law to calculate the enthalpy change for recovering tungsten from its oxide using the reaction:WO3(s) + 3H2(g) --> W(s)+3H2O(g) from the following data : 2W(s)+ 3O2(g)-->2WO3(s) , change in H = -1685.4 kJ 2H2(g)+O2(g)---> 2H2O(g) , change in H = -477.84 kJ
I am having difficulty with understanding this particular types of problems. 1) Calculate ΔHrxn for the...
I am having difficulty with understanding this particular types of problems. 1) Calculate ΔHrxn for the following reaction: C(s)+H2O(g)→CO(g)+H2(g) Use the following reactions and given ΔH values: C(s)+O2(g)→CO2(g), ΔH= -393.5 kJ 2CO(g)+O2(g)→2CO2(g), ΔH= -566.0 kJ 2H2(g)+O2(g)→2H2O(g), ΔH= -483.6 kJ 2) Calculate ΔHrxn for the following reaction: 5C(s)+6H2(g)→C5H12(l) Use the following reactions and given ΔH values. C5H12(l)+8O2(g)→5CO2(g)+6H2O(g), ΔH=−3244.8 kJ C(s)+O2(g)→CO2(g), ΔH=−393.5 kJ 2H2(g)+O2(g)→2H2O(g), ΔH=−483.5 kJ
1) Calculate the change in enthalpy (in kJ) for the reaction using the Enthalpy tables in...
1) Calculate the change in enthalpy (in kJ) for the reaction using the Enthalpy tables in the back of your book. CaCO3(s)  CaO(s) + CO2(g) 2) 5. The combustion of ethane, C2H4, is an exothermic reaction. C2H4(g) + 3 O2(g)  2 CO2(g) + 2 H2O(l) ∆H = -1.39 x 103 J Calculate the amount of heat liberated when 4.79 g of C2H4 reacts with excess oxygen.
Using the Information below determine the change in enthalpy for the following reaction: 2NO (g) +...
Using the Information below determine the change in enthalpy for the following reaction: 2NO (g) + 5H2 (g)!2NH3 (g) + 2H2O (l) H2 (g) + 1⁄2O2 (g)!H2O (l) ΔH° = -285.8 kJ N2 (g) + O2 (g)!2NO (l) ΔH° = +180.5 kJ 2NH3 (g)!N2 (g) + 3H2 (g)ΔH° = +92.22 kJ a)-197.52 kJ b)-241.7 kJ c)-483.3 kJ d)-659.88 kJ e)-844.3 kJ please show me which equation is first second and thrid and reason why? i may be taking the wrong...
A.) Express the equilibrium constant for the combustion of ethane in the balanced chemical equation. 2C2H6(g)+7O2(g)⇌4CO2(g)+6H2O(g)...
A.) Express the equilibrium constant for the combustion of ethane in the balanced chemical equation. 2C2H6(g)+7O2(g)⇌4CO2(g)+6H2O(g) K=[C2H6]2[O2]7 / [CO2]4[H2O]6 K=[CO2]4 / [C2H6]2[O2]7 K=K=[CO2]4[H2O]6 / [C2H6]2[O2]7 K=[CO2][H2O] / [C2H6]2[O2] B.)Consider the chemical equation and equilibrium constant at 25∘C: H2(g)+I2(g)⇌2HI(g) , K=6.2×102 Calculate the equilibrium constant for the following reaction at 25∘C: HI(g)⇌12H2(g)+12I2(g) Express the equilibrium constant to two significant figures. C.) Consider the following reaction and corresponding value of Kc: H2(g)+Br2(g)⇌2HBr(g) , Kc=1.9×1019 at 25∘C What is the value of Kp...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT