Question

Some measurements of the initial rate of a certain reaction are given in the table below....

Some measurements of the initial rate of a certain reaction are given in the table below.

N2

H2

initial rate of reaction

1.08M

1.38M

0.720/Ms

1.08M

1.93M

1.41/Ms

3.76M

1.38M

8.73/Ms

Use this information to write a rate law for this reaction, and calculate the value of the rate constant

k.Be sure your value for the rate constant has the correct number of significant digits. Also be sure your answer has the correct unit symbol.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
At a certain temperature the rate of this reaction is first order in HI with a...
At a certain temperature the rate of this reaction is first order in HI with a rate constant of :0.0632s 2HIg=H2g+I2g Suppose a vessel contains HI at a concentration of 1.28M . Calculate how long it takes for the concentration of HI to decrease to 17.0% of its initial value. You may assume no other reaction is important. Round your answer to 2 significant digits.
Constants | Periodic Table The following reaction was monitored as a function of time: A→B+C A...
Constants | Periodic Table The following reaction was monitored as a function of time: A→B+C A plot of ln[A] versus time yields a straight line with slope −5.0×10−3 /s . Part A Part complete What is the value of the rate constant (k) for this reaction at this temperature? Express your answer using two significant figures. k = 5.0×10−3 s−1 Previous Answers Correct Part B Part complete Write the rate law for the reaction. Rate=k Rate=k[A] Rate=k[A]2 Rate=k[A]3 Previous Answers...
Please study the table of data below, collected for the gas phase combination reaction of N2O...
Please study the table of data below, collected for the gas phase combination reaction of N2O with O3 at 298 K and constant volume (1.00 L). Experiment [N2O]0 [O3]0 Initial rate of reaction of O3 (M/s) 1 .010 .010 6.01 x 10^-4 2 .010 .020 1.20 x 10^-3 3 .020 .020 1.19 x 10^-3 A) Please determine the order of each reactant and write the rate law for the overall reaction. B) The overall reaction is: N2O (g) + O3...
The rate constant for a certain reaction is k = 2.00×10−3 s−1 . If the initial...
The rate constant for a certain reaction is k = 2.00×10−3 s−1 . If the initial reactant concentration was 0.400 M, what will the concentration be after 20.0 minutes? Express your answer with the appropriate units. Part B A zero-order reaction has a constant rate of 4.70×10−4 M/s. If after 70.0 seconds the concentration has dropped to 2.00×10−2 M, what was the initial concentration?
The rate constant for a certain reaction is k = 7.20×10−3 s−1 . If the initial...
The rate constant for a certain reaction is k = 7.20×10−3 s−1 . If the initial reactant concentration was 0.850 M, what will the concentration be after 10.0 minutes? A zero-order reaction has a constant rate of 3.00×10−4M/s. If after 60.0 seconds the concentration has dropped to 3.50×10−2M, what was the initial concentration?
3. A certain reaction has the following general form: 2A > B Concentration vs time data...
3. A certain reaction has the following general form: 2A > B Concentration vs time data were collected for this reaction, at 50°C and an initial concentration of 0.0200 M. It is determined that a plot of ln[A] vs. time resulted in a straight line with a slope value of - 2.97 X 10-2 min-1. A. Write the rate law. B. Write the integrated rate law C. What is k for this reaction (or what is the rate constant for...
The following initial rate data are for the reaction of ammonium ion with nitrite ion in...
The following initial rate data are for the reaction of ammonium ion with nitrite ion in aqueous solution: NH4+ + NO2- N2 + 2 H2O Experiment [NH4+]o, M [NO2-]o, M Initial Rate, Ms-1 1. 0.296 0.180 1.85×10-5 2. 0.296 0.361 3.72×10-5 3. 0.592 0.180 3.71×10-5 4. 0.592 0.361 7.44×10-5 Complete the rate law for this reaction in the box below. Use the form k[A]m[B]n , where '1' is understood for m or n and concentrations taken to the zero power...
The rate constant for a certain reaction is k = 4.40×10−3 s−1 . If the initial...
The rate constant for a certain reaction is k = 4.40×10−3 s−1 . If the initial reactant concentration was 0.450 M, what will the concentration be after 3.00 minutes? Express your answer with the appropriate units
The integrated rate law allows chemists to predict the reactant concentration after a certain amount of...
The integrated rate law allows chemists to predict the reactant concentration after a certain amount of time, or the time it would take for a certain concentration to be reached. The integrated rate law for a first-order reaction is: [A]=[A]0e−kt Now say we are particularly interested in the time it would take for the concentration to become one-half of its initial value. Then we could substitute [A]02 for [A] and rearrange the equation to: t1/2=0.693k This equation calculates the time...
The integrated rate law allows chemists to predict the reactant concentration after a certain amount of...
The integrated rate law allows chemists to predict the reactant concentration after a certain amount of time, or the time it would take for a certain concentration to be reached. The integrated rate law for a first-order reaction is: [A]=[A]0e−kt Now say we are particularly interested in the time it would take for the concentration to become one-half of its inital value. Then we could substitute [A]02 for [A] and rearrange the equation to: t1/2=0.693k This equation caculates the time...