Question

91.2 mL of 0.120 M HCl is mixed with 50.0 mL of 0.101 M Ba(OH)2 solution....

91.2 mL of 0.120 M HCl is mixed with 50.0 mL of 0.101 M Ba(OH)2 solution.

2 HCl(aq) + 1 Ba(OH)2(aq) →   1 BaCl2(aq) + 2 H2O(l)

What amount of hydronium ion (in mole) would be present at the end of the reaction?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
300 mL of a 0.694 M HCl aqueous solution is mixed with 300 mL of 0.347...
300 mL of a 0.694 M HCl aqueous solution is mixed with 300 mL of 0.347 M Ba(OH)2 aqueous solution in a coffee-cup calorimeter. Both the solutions have an initial temperature of 28.7 °C. Calculate the final temperature of the resulting solution, given the following information: H+(aq) + OH- (aq) ? H2O(?) ? ? ? ?Hrxn = -56.2 kJ/mol Assume that volumes can be added, that the density of the solution is the same as that of water (1.00 g/mL),...
300 mL of a 0.694 M HCl aqueous solution is mixed with 300 mL of 0.347...
300 mL of a 0.694 M HCl aqueous solution is mixed with 300 mL of 0.347 M Ba(OH)2 aqueous solution in a coffee-cup calorimeter. Both the solutions have an initial temperature of 28.7 °C. Calculate the final temperature of the resulting solution, given the following information: H+(aq) + OH- (aq) → H2O(ℓ)       ΔHrxn = -56.2 kJ/mol Assume that volumes can be added, that the density of the solution is the same as that of water (1.00 g/mL), and the specific...
In a constant‑pressure calorimeter, 65.0 mL65.0 mL of 0.320 M Ba(OH)20.320 M Ba(OH)2 was added to...
In a constant‑pressure calorimeter, 65.0 mL65.0 mL of 0.320 M Ba(OH)20.320 M Ba(OH)2 was added to 65.0 mL65.0 mL of 0.640 M HCl.0.640 M HCl. The reaction caused the temperature of the solution to rise from 21.87 ∘C21.87 ∘C to 26.23 ∘C.26.23 ∘C. If the solution has the same density and specific heat as water (1.00 g/mL1.00 g/mL and 4.184J/g⋅°C,)4.184J/g⋅°C,) respectively), what is Δ?ΔH for this reaction (per mole H2OH2O produced)? Assume that the total volume is the sum of...
(a) How many milliliters of 0.165 M HCl are needed to neutralize completely 35.0 mL of...
(a) How many milliliters of 0.165 M HCl are needed to neutralize completely 35.0 mL of 0.101 M Ba(OH)2 solution? ________ ml (b) How many milliliters of 2.50 M H2SO4 are needed to neutralize 50.0 g of NaOH? _________ mL (c) If 56.8 mL of BaCl2 solution is needed to precipitate all the sulfate in a 544 mg sample of Na2SO4 (forming BaSO4), what is the molarity of the solution? _________M (d) If 47.5 mL of 0.250 M HCl solution...
In a constant-pressure calorimeter, 55.0 mL of 0.330 M Ba(OH)2 was added to 55.0 mL of...
In a constant-pressure calorimeter, 55.0 mL of 0.330 M Ba(OH)2 was added to 55.0 mL of 0.660 M HCl. The reaction caused the temperature of the solution to rise from 23.64 °C to 28.14 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·K, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 70.0 mL of 0.340 M Ba(OH)2 was added to 70.0 mL of...
In a constant-pressure calorimeter, 70.0 mL of 0.340 M Ba(OH)2 was added to 70.0 mL of 0.680 M HCl. The reaction caused the temperature of the solution to rise from 22.00 °C to 26.63 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·K, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 70.0 mL of 0.340 M Ba(OH)2 was added to 70.0 mL of...
In a constant-pressure calorimeter, 70.0 mL of 0.340 M Ba(OH)2 was added to 70.0 mL of 0.680 M HCl. The reaction caused the temperature of the solution to rise from 21.03 °C to 25.66 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·K, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 70.0 mL of 0.330 M Ba(OH)2 was added to 70.0 mL of...
In a constant-pressure calorimeter, 70.0 mL of 0.330 M Ba(OH)2 was added to 70.0 mL of 0.660 M HCl. The reaction caused the temperature of the solution to rise from 24.17 °C to 28.67 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·K, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 65.0 mL of 0.340 M Ba(OH)2 was added to 65.0 mL of...
In a constant-pressure calorimeter, 65.0 mL of 0.340 M Ba(OH)2 was added to 65.0 mL of 0.680 M HCl. The reaction caused the temperature of the solution to rise from 24.38 °C to 29.01 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·°C, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 60.0 mL of 0.300 M Ba(OH)2 was added to 60.0 mL of...
In a constant-pressure calorimeter, 60.0 mL of 0.300 M Ba(OH)2 was added to 60.0 mL of 0.600 M HCl. The reaction caused the temperature of the solution to rise from 21.02 °C to 25.11 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·°C, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.