Question

1. A student mixes 5.00 mL 2.00 x 10-3 M Fe(NO3) in 1 M HNO3 with...

1. A student mixes 5.00 mL 2.00 x 10-3 M Fe(NO3) in 1 M HNO3 with 3.00 mL 2.00 x 10-3 M KSCN and 2.00 mL of water. She finds that in the equilibrium mixture the concentration of FeSCN2+ is 7.0 x 10-5 M. Find Kc for the reaction Fe3+ (aq0 + SCN- (aq0 ------Fe(SCN)2+ (aq).

Step 1 Find the number of moles Fe3+ and SCN- initially present.

Step 2. How many moles of FeSCN2+ are in the mixture at equilibrium? What is the volume of the equilibrium mixture?

How many moles of Fe3+ and SCN- are used up in making the FeSCN2+?

How many moles of Fe3+ and SCN- remain in the solution at equilibrium?

What are the concentrations of Fe3+, SCN-, and FeSCN2+ at equilibrium?

Fe3+= M; (SCN-)= M; (FeSCN2+)=

what is the value of Kc for the reaction?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1) A student mixes 5.00 mL of 2.00 x 10-3 M Fe(NO3)3 with 5.00 mL of...
1) A student mixes 5.00 mL of 2.00 x 10-3 M Fe(NO3)3 with 5.00 mL of 2.00 x 10-3 M KSCN. She finds that in the equilibrium mixture the concentration of FeSCN2+ is 1.40 x 10-4 M a) What is the initial concentration in solution of the Fe3+ and SCN- ? b) What is the equilibrium constant for the reaction? 2. Assume that the reaction studied is actually: Fe3+ (aq) + 2 SCN- (aq) ↔ Fe(SCN)2+ (aq) a) What is...
A student mixes 5.00 mL of 2.00 x 10‐3 M Fe(NO3)3 with 5.00 mL 2.00 x...
A student mixes 5.00 mL of 2.00 x 10‐3 M Fe(NO3)3 with 5.00 mL 2.00 x 10‐3 M KSCN. She finds that in the equilibrium mixture the concentration of FeSCN+2 is 1.40 x 10‐4 M. a.   What is the initial concentration in solution of the Fe+3 and SCN‐ ? b.   What is the equilibrium constant for the reaction? c. What happened to the K+ and the NO3 ‐ ions in this solution?
A solution of 5.00 mL of 0.00300 M Fe(NO3)3, 4.00 mL of 0.00300 M KSCN, and...
A solution of 5.00 mL of 0.00300 M Fe(NO3)3, 4.00 mL of 0.00300 M KSCN, and 3.00 mL of 1.0 M HNO3 is mixed together and allowed to reach equilibrium. The concentration of Fe(SCN)^2+ is found to be 2.72 x 10^-4 M at equilibrium. Calculate the equilibrium constant for this reaction.
A solution of 5.00 mL of 0.00300 M Fe(NO3)3, 4.00 mL of 0.00300 M KSCN, and...
A solution of 5.00 mL of 0.00300 M Fe(NO3)3, 4.00 mL of 0.00300 M KSCN, and 3.00 mL of 1.0 M HNO3 is mixed together and allowed to reach equilibrium. The concentration of Fe(SCN)2+ is found to be 2.72�10-4 M at equilibrium. Calculate the equilibrium constant for this reaction.
5.00 mL of 2.70E-3 M Fe(NO3)3 is mixed with 1.00 mL of 2.79E-3 M KSCN and...
5.00 mL of 2.70E-3 M Fe(NO3)3 is mixed with 1.00 mL of 2.79E-3 M KSCN and 4.00 mL of water. The equalibrium molarity of Fe(SCN)2+ is found to be 6.00E-5 M. If the reaction proceeds as shown below, what is the equilibrium molarity of Fe3+ and SCN-?
2.) FeSCN2+ equilibrium concentration was found to be 3.20 x 10-5 M in a solution made...
2.) FeSCN2+ equilibrium concentration was found to be 3.20 x 10-5 M in a solution made by mixing 5.00 mL of 1.00 x 10-3 M Fe(NO3)3 with 5.00 mL of 1.00 x 10-3 M HSCN. The H+ concentration is maintained at 0.500 M at all times since the HSCN and Fe3+ solutions were prepared using 0.500 M HNO3 in place of distilled water. a. How many moles FeSCN2+ are present at equilibrium? b. How many moles each of Fe3+ and...
From her Beer's Law plot in part A, a student obtained a best fit line of...
From her Beer's Law plot in part A, a student obtained a best fit line of y=4.11 x 103x + 0.00 For part B, she made up a series of solutions. One solution had the following composition and absorbance: Vol 2.00 x 10-3 M Fe(NO3)3 (mL)= 5.00 Vol of 2.00 x 10-3 M KSCN (mL)= 5.00 Vol of 0.5 M HNO3 (mL)= 0.00 Absorbance at 450 nm= 0.629 What is the initial concentration of Fe(NO3)3 in the solution (after mixing...
A mixture is made by combining 10.9 mL of 4.1×10−3 M KSCN, 6.1 mL of 4.5×10−2...
A mixture is made by combining 10.9 mL of 4.1×10−3 M KSCN, 6.1 mL of 4.5×10−2 M Fe(NO3)3, and 12.5 mL of 0.484 M HNO3. Calculate concentraion of Fe3+
A mixture is made by combining 12.9 mL of 5.4×10−3 M KSCN, 8.3 mL of 2.2×10−2...
A mixture is made by combining 12.9 mL of 5.4×10−3 M KSCN, 8.3 mL of 2.2×10−2 M Fe(NO3)3, and 7.7 mL of 0.34 M HNO3. Calculate the concentraion of Fe3+ in the solution.
A mixture is made by combining 17.8 mL of 6.1×10−3 M KSCN, 9.6 mL of 9.5×10−2...
A mixture is made by combining 17.8 mL of 6.1×10−3 M KSCN, 9.6 mL of 9.5×10−2 M Fe(NO3)3, and 8 mL of 0.29 M HNO3. Calculate the concentration of Fe3+ in the solution.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT