Nickel crystallizes in a face-centered cubic lattice. If the density of the metal is 8.908 g/cm3, what is the unit cell edge length in pm?
1) Calculate the average mass of one atom of Ni:
58.6934 g mol¯1 ÷ 6.022 x 1023 atoms mol¯1 = 9.746496 x 10¯23 g/atom
2) Calculate the mass of the 4 nickel atoms in the face-centered cubic unit cell:
9.746496 x 10¯23 g/atom times 4 atoms/unit cell = 3.898598 x 10¯22 g/unit cell
3) Use density to get the volume of the unit cell:
3.898598 x 10¯22 g ÷ 8.908 g/cm3 = 4.376514 x 10¯23 cm3
4) Determine the edge length of the unit cell:
[cube root of] 4.376514 x 10¯23 cm3 = 3.524 x 10¯8 cm
5) Convert cm to pm:
cm = 10¯2 m; pm = 10¯12 m.
Consequently, there are 1010 pm/cm
(3.524 x 10¯8 cm) (1010 pm/cm) = 352.4 pm
Get Answers For Free
Most questions answered within 1 hours.