Question

Assuming 100% dissociation, calculate the freezing point and boiling point of 1.99 m AgNO3(aq). Constants may...

Assuming 100% dissociation, calculate the freezing point and boiling point of 1.99 m AgNO3(aq). Constants may be found here.

Homework Answers

Answer #1

[AgNO3]= 1.99 m   , we know m is molality which is equal to = mol of solute / Mass of solute in kg.

Since the dissociation is 100 % so the i ( number of particles that are formed in the solution ) = 2

Solution:

We use following formulae.

Delta Tf = i x m x kf

Here I = 2 , m is molality, kf is the freezing point constant of water.

Delta Tf = freezing pint of the solvent – freezing point of the solution = 00 C – (freezing point of the solution)

Kf of water = -1.86 0C/ m

Lets plug the given values.

-(freezing point of the solution) = 2 x 1.99 m x ( -1.86 0C/m)

Freezing point of the solution =- 7.40 0C

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Assuming 100% dissociation, calculate the freezing point and boiling point of 2.99 m AgNO3(aq). Constants may...
Assuming 100% dissociation, calculate the freezing point and boiling point of 2.99 m AgNO3(aq). Constants may be found here. Solvent Formula Kf value* (°C/m) Normal freezing point (°C) Kb value (°C/m) Normal boiling point (°C) water H2O 1.86 0.00 0.512 100.00 benzene C6H6 5.12 5.49 2.53 80.1 cyclohexane C6H12 20.8 6.59 2.92 80.7 ethanol C2H6O 1.99 –117.3 1.22 78.4 carbon tetrachloride   CCl4 29.8 –22.9 5.03 76.8 camphor   C10H16O 37.8 176
Assuming 100% dissociation, calculate the freezing point and boiling point of 2.19 m Na2SO4(aq). Constants may...
Assuming 100% dissociation, calculate the freezing point and boiling point of 2.19 m Na2SO4(aq). Constants may be found here.
Assuming 100% dissociation, calculate the freezing point and boiling point of 1.52 m SnCl4(aq). Constants may...
Assuming 100% dissociation, calculate the freezing point and boiling point of 1.52 m SnCl4(aq). Constants may be found here. vent Formula Kf value* (°C/m) Normal freezing point (°C) Kb value (°C/m) Normal boiling point (°C) water H2O 1.86 0.00 0.512 100.00 benzene C6H6 5.12 5.49 2.53 80.1 cyclohexane C6H12 20.8 6.59 2.92 80.7 ethanol C2H6O 1.99 –117.3 1.22 78.4 carbon tetrachloride   CCl4 29.8 –22.9 5.03 76.8 camphor   C10H16O 37.8 176
Assuming 100% dissociation, calculate the freezing point and boiling point of 3.37 m AgNO3(aq).
Assuming 100% dissociation, calculate the freezing point and boiling point of 3.37 m AgNO3(aq).
Assuming 100% dissociation, calculate the freezing point (TfTf) and boiling point (TbTb) of 1.92 m SnCl4(aq)1.92...
Assuming 100% dissociation, calculate the freezing point (TfTf) and boiling point (TbTb) of 1.92 m SnCl4(aq)1.92 m SnCl4(aq). Colligative constants can be found in the chempendix.
Assuming 100% dissociation, calculate the freezing point and boiling point of 1.19 m K3PO4(aq)
Assuming 100% dissociation, calculate the freezing point and boiling point of 1.19 m K3PO4(aq)
Assuming 100% dissociation, calculate the freezing point (Tf) and boiling point (Tb) of 3.26 m Na2SO4(aq)....
Assuming 100% dissociation, calculate the freezing point (Tf) and boiling point (Tb) of 3.26 m Na2SO4(aq). Tf= ∘C Tb= ∘C Constants for freezing-point depression and boiling-point elevation calculations at 1 atm: Solvent Formula Kf value* (°C/m) Normal freezing point (°C) Kb value (°C/m) Normal boiling point (°C) water H2O 1.86 0.00 0.512 100.00 benzene C6H6 5.12 5.49 2.53 80.1 cyclohexane C6H12 20.8 6.59 2.92 80.7 ethanol C2H6O 1.99 –117.3 1.22 78.4 carbon tetrachloride CCl4 29.8 –22.9 5.03 76.8 camphor C10H16O...
Calculate the freezing point and boiling point in each solution, assuming complete dissociation of the solute...
Calculate the freezing point and boiling point in each solution, assuming complete dissociation of the solute Calculate the freezing point of a solution containing 13.9 g FeCl3 in 177 g water. Calculate the boiling point of a solution above Calculate the freezing point of a solution containing 4.2 % KCl by mass (in water). Calculate the boiling point of a solution above Calculate the freezing point of a solution containing 0.157 m MgF2 Calculate the boiling point of a solution...
The boiling point of an aqueous solution is 101.88 °C. What is the freezing point? Constants...
The boiling point of an aqueous solution is 101.88 °C. What is the freezing point? Constants can be found here. Constants for freezing-point depression and boiling-point elevation calculations at 1 atm: Solvent Formula Kf value* (°C/m) Normal freezing point (°C) Kb value (°C/m) Normal boiling point (°C) water H2O 1.86 0.00 0.512 100.00 benzene C6H6 5.12 5.49 2.53 80.1 cyclohexane C6H12 20.8 6.59 2.92 80.7 ethanol C2H6O 1.99 –117.3 1.22 78.4 carbon tetrachloride CCl4 29.8 –22.9 5.03 76.8 camphor C10H16O...
Calculate the freezing point and boiling point in each solution, assuming complete dissociation of the solute....
Calculate the freezing point and boiling point in each solution, assuming complete dissociation of the solute. Part A Calculate the freezing point of a solution containing 12.3 g FeCl3 in 180 g water. Tf = ∘C Request Answer Part B Calculate the boiling point of a solution above. Tb = ∘C Request Answer Part C Calculate the freezing point of a solution containing 4.2 % KCl by mass (in water). Express your answer using two significant figures. Tf = ∘C...