Question

When solutions of silver nitrate and potassium chloride are mixed, silver chloride precipitates out of solution...

When solutions of silver nitrate and potassium chloride are mixed, silver chloride precipitates out of solution according to the equation AgNO3(aq)+KCl(aq)→AgCl(s)+KNO3(aq).

A) What mass of silver chloride can be produced from 1.90 L of a 0.133 M solution of silver nitrate?

B) The reaction described in Part A required 3.67 L of potassium chloride. What is the concentration of this potassium chloride solution?

Please help!

Homework Answers

Answer #1

A)

number of moles of AgNO3 = M(AgNO3)*V(AgNO3)

= 0.133 M * 1.90 L

= 0.2527 mol

from reaction,

mol of AgCl formed = mol of AgNO3 reacted

= 0.2527 mol

Molar mass of AgCl,

MM = 1*MM(Ag) + 1*MM(Cl)

= 1*107.9 + 1*35.45

= 143.35 g/mol

use:

mass of AgCl,

m = number of mol * molar mass

= 0.2527 mol * 1.434*10^2 g/mol

= 36.22 g

Answer: 36.2 g

B)

From reaction,

mol of KCl reacted = mol of AgNO3 formed

= 0.2527 mol

Now use:

mol of KCl = M(KCl)*V(KCl)

0.2527 mol = M(KCl) * 3.67 L

M(KCl) = 0.0689 M

Answer: 0.0689 M

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Solution Stoichiometry: When solutions of silver nitrate and potassium chloride are mixed, silver chloride precipitates out...
Solution Stoichiometry: When solutions of silver nitrate and potassium chloride are mixed, silver chloride precipitates out of solution according to the equation AgNO3(aq)+KCl(aq)→AgCl(s)+KNO3(aq). Part A. What mass of silver chloride can be produced from 1.46 L of a 0.218 M solution of silver nitrate? Part B. The reaction described in Part A required 3.17 L of potassium chloride. What is the concentration of this potassium chloride solution?
When solutions of silver nitrate and magnesium chloride are mixed, silver chloride precipitates out of solution...
When solutions of silver nitrate and magnesium chloride are mixed, silver chloride precipitates out of solution according to the equation 2AgNO3(aq)+MgCl2(aq)→2AgCl(s)+Mg(NO3)2(aq). What mass of silver chloride can be produced from 1.96 L of a 0.233 Msolution of silver nitrate? Express your answer with the appropriate units. Mass of AgCl=65.3 The reaction described in Part A required 3.46 L of magnesium chloride. What is the concentration of this magnesium chloride solution? Express your answer with the appropriate units.
When solutions of silver nitrate and magnesium chloride are mixed, silver chloride precipitates out of solution...
When solutions of silver nitrate and magnesium chloride are mixed, silver chloride precipitates out of solution according to the equation 2AgNO3(aq)+MgCl2(aq)→2AgCl(s)+Mg(NO3)2(aq) Part A What mass of silver chloride can be produced from 1.84 L of a 0.152 M solution of silver nitrate? Express your answer with the appropriate units. mass of AgCl = g Part B The reaction described in Part A required 3.16 L of magnesium chloride. What is the concentration of this magnesium chloride solution? Express your answer...
When solutions of silver nitrate and calcium chloride are mixed, silver chloride precipitates out of solution...
When solutions of silver nitrate and calcium chloride are mixed, silver chloride precipitates out of solution according to the equation 2AgNO3(aq)+CaCl2(aq)→2AgCl(s)+Ca(NO3)2(aq) 1. What mass of silver chloride can be produced from 1.97 L of a 0.285 M solution of silver nitrate? 2.The reaction described in Part A required 3.62 L of calcium chloride. What is the concentration of this calcium chloride solution?
When solutions of silver nitrate and calcium chloride are mixed, silver chloride precipitates out of solution...
When solutions of silver nitrate and calcium chloride are mixed, silver chloride precipitates out of solution according to the equation 2AgNO3(aq)+CaCl2(aq)→2AgCl(s)+Ca(NO3)2(aq) Part A What mass of silver chloride can be produced from 1.94 L of a 0.126 M solution of silver nitrate? Part B The reaction described in Part A required 3.49 L of calcium chloride. What is the concentration of this calcium chloride solution?
When solutions of silver nitrate and magnesium chloride are mixed, silver chloride precipitates out of solution...
When solutions of silver nitrate and magnesium chloride are mixed, silver chloride precipitates out of solution according to the equation 2AgNO3(aq)+MgCl2(aq)→2AgCl(s)+Mg(NO3)2(aq). What mass of silver chloride can be produced from 1.96 L of a 0.233 M solution of silver nitrate? Express your answer with the appropriate units. The reaction described in Part A required 3.46 L of magnesium chloride. What is the concentration of this magnesium chloride solution? Express your answer with the appropriate units.
When solutions of silver nitrate and magnesium chloride are mixed, silver chloride precipitates out of solution...
When solutions of silver nitrate and magnesium chloride are mixed, silver chloride precipitates out of solution according to the equation 2AgNO3(aq)+MgCl2(aq)→2AgCl(s)+Mg(NO3)2(aq) Part A: What mass of silver chloride can be produced from 1.31 L of a 0.156 M solution of silver nitrate? Express your answer with the appropriate units. Part B: The reaction described in Part A required 3.43 L of magnesium chloride. What is the concentration of this magnesium chloride solution? Express your answer with the appropriate units.
When solutions of silver nitrate and calcium chloride are mixed, silver chloride precipitates out of solution...
When solutions of silver nitrate and calcium chloride are mixed, silver chloride precipitates out of solution according to the equation 2AgNO3(aq)+CaCl2(aq)→2AgCl(s)+Ca(NO3)2(aq) Part A What mass of silver chloride can be produced from 1.28 L of a 0.267 M solution of silver nitrate? Express your answer with the appropriate units. Part B The reaction described in Part A required 3.60 L of calcium chloride. What is the concentration of this calcium chloride solution? Express your answer with the appropriate units
When solutions of silver nitrate and calcium chloride are mixed, silver chloride precipitates out of solution...
When solutions of silver nitrate and calcium chloride are mixed, silver chloride precipitates out of solution according to the equation 2AgNO3(aq)+CaCl2(aq)→2AgCl(s)+Ca(NO3)2(aq) Part A What mass of silver chloride can be produced from 1.09 L of a 0.281 M solution of silver nitrate? Express your answer with the appropriate units. Part B The reaction described in Part A required 3.16 L of calcium chloride. What is the concentration of this calcium chloride solution? Express your answer with the appropriate units.
When solutions of silver nitrate and magnesium chloride are mixed, silver chloride precipitates out of solution...
When solutions of silver nitrate and magnesium chloride are mixed, silver chloride precipitates out of solution according to the equation 2AgNO3(aq)+MgCl2(aq)→2AgCl(s)+Mg(NO3)2(aq) Part A What mass of silver chloride can be produced from 1.65 L of a 0.282 M solution of silver nitrate? Express your answer with the appropriate units. Part B The reaction described in Part A required 3.91 L of magnesium chloride. What is the concentration of this magnesium chloride solution? Express your answer with the appropriate units.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT