Question

For the reaction H2 (g) + CO2 (g) ⇌ H2O(g) + CO(g), Kc = 1.60. Exactly...

For the reaction H2 (g) + CO2 (g) ⇌ H2O(g) + CO(g), Kc = 1.60. Exactly 1.00 mole of each gas is added simultaneously to a 10.0 L flask. Calculate all equilibrium concentrations.

Homework Answers

Answer #2

The equilbirium expression

Kc = [H2O][CO]/([H2][CO2])

Kc = 1.6

initially

[H2O][CO]= 1/10 = 0.1

[H2][CO2]= 0.1

in equilibrium (expect more product sto form due to KC value)

[H2O][CO]= 0.1 + x

[H2][CO2]= 0.1 - x

substitute

1.60 = (0.1 + x)^2 / (0.1 - x)^2

sqrt(1.6) = (0.1+x) / (0.1-x)

1.2649*(0.1-x) = 0.1+x

0.12649 - 1.2649x = 0.1 + x

-2.2649x = 0.1 - 0.12649

x = 0.02649 / 2.2649

x = 0.0116958

so

[H2O][CO]= 0.1 + 0.0116958 = 0.1116958

[H2][CO2]= 0.1 - 0.0116958 = 0.0883042

proof:

Q = [H2O][CO]/([H2][CO2])

Q = (0.1116958 *0.1116958 ) / (0.08830422^2) = 1.5999 which is approx to 1.6

answered by: anonymous
Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
At a certain temperature the reaction CO(g) + H2O(g) CO2(g) + H2(g) has Kc = 0.400....
At a certain temperature the reaction CO(g) + H2O(g) CO2(g) + H2(g) has Kc = 0.400. Exactly 1.00 mol of each gas was placed in a 100.0 L vessel and the mixture underwent reaction. What was the equilibrium concentration of each gas? [CO] = M [H2O] = M [H2] = M [CO2] =
At a certain temperature the reaction CO(g) + H2O(g) CO2(g) + H2(g) has Kc = 0.400....
At a certain temperature the reaction CO(g) + H2O(g) CO2(g) + H2(g) has Kc = 0.400. Exactly 1.00 mol of each gas was placed in a 100.0 L vessel and the mixture underwent reaction. What was the equilibrium concentration of each gas?
The Equilibrium constant Kc for the reaction H2(g) + CO2(g) -> H2O(g) + CO(g) is 4.2...
The Equilibrium constant Kc for the reaction H2(g) + CO2(g) -> H2O(g) + CO(g) is 4.2 at 1650 deg C. Initially .74 mol H2 and .74 mol CO2 are injected into a 4.6-L flask. Calculate the concentration of each species at equilibrium. H2= CO2 = H2O= CO=
Consider the following reaction. CO (g) +H2O (g) = CO2 (g) + H2 (g) If the...
Consider the following reaction. CO (g) +H2O (g) = CO2 (g) + H2 (g) If the reaction begins in a 10.00 L vessel with 2.5 mol CO and 2.5 mol H2O gas at 588K (Kc= 31.4 at 588 K). Calculate the concentration of CO, H2O, CO2, and H2 at equilibrium.
The equilibrium constant Kc for the reaction H2(g) + Br2(g) ⇆ 2HBr(g) is 2.180×106 at 730°...
The equilibrium constant Kc for the reaction H2(g) + Br2(g) ⇆ 2HBr(g) is 2.180×106 at 730° C. Starting with 4.20 moles of HBr in a 17.8−L reaction vessel, calculate the concentrations of H2,Br2, and HBr at equilibrium. 17. The equilibrium constant Kc for the reaction below is 0.00771 at a certain temperature. Br2(g) ⇌ 2Br(g) If the initial concentrations are [Br2] = 0.0433 M and [Br] = 0.0462 M, calculate the concentrations of these species at equilibrium. For the reaction...
CO(g) + H2O --> CO2 (g) + H2(g) kC = 4.06 at 500 C degree. 2.8g...
CO(g) + H2O --> CO2 (g) + H2(g) kC = 4.06 at 500 C degree. 2.8g CO , 1.8g H2O placed in a 1.00 litter a/ calculate Kp b/ What are the concentrations of reactants and products at equilibrium
The equilibrium constant Kc for the reaction H2(g) + CO2(g) = CO(g) + H20(g) is 5.1...
The equilibrium constant Kc for the reaction H2(g) + CO2(g) = CO(g) + H20(g) is 5.1 at 1700 C. Initially 0.65 mol of H2, 0.1 mol of CO and 0.65 mol of CO2 are injected into a 2.5-L flask. Calculate the concentraion of each species at equilibrium. Please show the steps so I can understand how to solve the problem. Thank you.
An industrial chemist puts 1.00 mole each of H2(g) and CO2(g) in a 1.00 L container...
An industrial chemist puts 1.00 mole each of H2(g) and CO2(g) in a 1.00 L container at a constant temperature of 800oC. This reaction occurs: H2(g) + CO2(g) H2O(g) + CO(g) When equilibrium is reached, 0.49 mole of CO2(g) is in the container. Find the value of Kc for the reaction.
The H2/CO ratio in mixtures of carbon monoxide and hydrogen (called synthesis gas) is increased by...
The H2/CO ratio in mixtures of carbon monoxide and hydrogen (called synthesis gas) is increased by the water-gas shift reaction CO(g)+H2O(g)⇌CO2(g)+H2(g), which has an equilibrium constant Kc= 4.24 at 800 K. Part A) Calculate the equilibrium concentration of CO if CO, H2O, CO2, and H2 are added to a reaction vessel with initial concentrations of 0.180 M. Express your answer to three decimal places and include the appropriate units. [CO]= Part B) Calculate the equilibrium concentration of H2O if CO,...
Consider the following reaction: CO(g)+H2O(g)⇌CO2(g)+H2(g) Kc=102 at 500 K A reaction mixture initially contains 0.120 M...
Consider the following reaction: CO(g)+H2O(g)⇌CO2(g)+H2(g) Kc=102 at 500 K A reaction mixture initially contains 0.120 M COand 0.120 M H2O. A)What will be the equilibrium concentration of [CO]? B)What will be the equilibrium concentration of [H2O]? C)What will be the equilibrium concentration of [CO2]? D)What will be the equilibrium concentration of [H2]?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT