Question

The rate constant for the reaction 2N2O5(g) → 4NO2(g) + O2(g) is equal to 3.41 x...

The rate constant for the reaction 2N2O5(g) → 4NO2(g) + O2(g) is equal to 3.41 x 10–5 s–1 at 30 ºC. If the initial concentration of N2O5 is 0.446 M what concentration of NO2 will be observed after 175 minutes? Assume that initially no NO2 was present in the reaction vessel.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
13) For the reaction: 2N2O5(g) ?4NO2(g) +O2(g) the rate law is: ?[O2] ?t = k[N2O5] At...
13) For the reaction: 2N2O5(g) ?4NO2(g) +O2(g) the rate law is: ?[O2] ?t = k[N2O5] At 300 K, the half-life is 2.50
Please include all steps and significant digits and units. 2N2o5 (g) --> 4No2 (g) + O2...
Please include all steps and significant digits and units. 2N2o5 (g) --> 4No2 (g) + O2 (g) The following data were obtained in a kinetic run from the decomposition of gaseous dinitrogen pentoxide at a set temperature. Time (s) 0 100 200 300 400 500 600 700 [N2O5]     0.0200 0.0169 0.0142 0.0120 0.0101 0.0086 0.0072 0.0061 a) Graphically determine the order of the reaction. b) Calculate the rate constant for the reaction. c) Calculate the concentration of dinitrogen pentoxide in...
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)→4NO2(g)+O2(g) at 70∘C is 6.82×10−3 s−1. Suppose...
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)→4NO2(g)+O2(g) at 70∘C is 6.82×10−3 s−1. Suppose we start with 2.10×10−2 mol of N2O5(g) in a volume of 1.8 L . How many minutes will it take for the quantity of N2O5 to drop to 1.6×10−2 mol ?
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)→4NO2(g)+O2(g) at 70∘C is 6.82×10^−3 s−1. Suppose...
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)→4NO2(g)+O2(g) at 70∘C is 6.82×10^−3 s−1. Suppose we start with 2.60×10^−2 mol of N2O5(g) in a volume of 2.4 L . How many moles of N2O5 will remain after 4.0 min ? How many minutes will it take for the quantity of N2O5 to drop to 1.9×10^−2 mol ? What is the half-life of N2O5 at 70∘C?
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)→4NO2(g)+O2(g) at 70∘C is 6.82×10−3 s−1. Suppose...
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)→4NO2(g)+O2(g) at 70∘C is 6.82×10−3 s−1. Suppose we start with 2.30×10−2 mol of N2O5(g) in a volume of 1.8 L . a) How many moles of N2O5 will remain after 6.0 min ? b) How many minutes will it take for the quantity of N2O5 to drop to 1.6×10−2 mol ? c) What is the half-life of N2O5 at 70∘C?
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)?4NO2(g)+O2(g), at 70?C is 6.82×10?3s?1. Suppose we...
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)?4NO2(g)+O2(g), at 70?C is 6.82×10?3s?1. Suppose we start with 2.90×10?2 mol of N2O5(g) in a volume of 1.5 L . a) How many moles of N2O5 will remain after 5.0 min ? b) How many minutes will it take for the quantity of N2O5 to drop to 2.0×10?2 mol? c) What is the half-life of N2O5 at 70?C?
For the reaction 2N2O5(g) → 4NO2(g) + O2(g), the following data were collected: t (minutes) [N2O5]...
For the reaction 2N2O5(g) → 4NO2(g) + O2(g), the following data were collected: t (minutes) [N2O5] (mol/L) 0 1.24 × 10–2 10. 0.92 × 10–2 20. 0.68 × 10–2 30. 0.50 × 10–2 40. 0.37 × 10–2 50. 0.28 × 10–2 70. 0.15 × 10–2 Reference: Ref 12-10 The half-life of this reaction is approximately
the decomposition of N2O5 can be described by equation 2N2O5 (soln) = 4NO2 (soln) + O2...
the decomposition of N2O5 can be described by equation 2N2O5 (soln) = 4NO2 (soln) + O2 (g) t (s)    [N2O5](M) 0 ----- 2.62 215----2.29 506----1.91 795----1.59 given data for reaction at 45°C . A). interval 0-215s reaction rate ? M/s B). interval 215-506s reaction rate? M/s C). interval 506-795s reaction rate? M/s
The gas phase reaction 2N2O5(g)->4NO2(g)+O2(g) has an activation energy of 103 kJ/mole, and the first order...
The gas phase reaction 2N2O5(g)->4NO2(g)+O2(g) has an activation energy of 103 kJ/mole, and the first order rate constant is 1.16x10^-8 min^-1 at 231 K. what is the rate constant at 211K?
The first order constant is 4.82 x 10-3 s-1 at 70C for the decomposition of the...
The first order constant is 4.82 x 10-3 s-1 at 70C for the decomposition of the following reaction: 2N2O5 (g) -> 4NO2 + O2 (g) Suppose that you start with .0175M of N2O5 (g) a.) What is the molarity of N2O5 that remains after 15 minutes (note: the rate constant is in seconds) b.) How many seconds will it take for the quantity of N2O5 to drop to .015M? c.) What is the half life of N2O5 at 70C?