Question

Part C What will occur if light with a shorter wavelength than that in part b...

Part C What will occur if light with a shorter wavelength than that in part b =( 91.1 nm) is used to excite the hydrogen atom? What will occur if light with a shorter wavelength than that in part (b) is used to excite the hydrogen atom?

A) If light with a wavelength shorter than 91.1 nm is used to excite the H atom, the excess energy will be devided to the kinetic and potential energy of the ejected electron.

B) If light with a wavelength shorter than 91.1 nm is used to excite the H atom, the excess energy will become the potential energy of the ejected electron.

C) If light with a wavelength shorter than 91.1 nm is used to excite the H atom, the excess energy will become the kinetic energy of the ejected electron.

D) If light with a wavelength shorter than 91.1 nm is used to excite the H atom, there will be not enough energy to eject an electron.

Homework Answers

Answer #1

the correct anser is

answer )

If light with a wavelength shorter than 91.1 nm is used to excite the H atom, the excess energy will become the kinetic energy of the ejected electron.

because E =h or E= h C/​ ( C= or = C/)

from above we see that is inversely proportional to E

as decreases our energy increses and releses in form of kinetic energy and  of ejected electron .

correct option C)

If light with a wavelength shorter than 91.1 nm is used to excite the H atom, the excess energy will become the kinetic energy of the ejected electron.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Electrons are ejected from sodium metal by any light that has a wavelength shorter than 544...
Electrons are ejected from sodium metal by any light that has a wavelength shorter than 544 nm. What is the kinetic energy of an electron (in J) that is ejected from sodium by light with a wavelength of 385 nm?
A metal alloy has a work function of E0 = 4.2 × 10?19 J. It is...
A metal alloy has a work function of E0 = 4.2 × 10?19 J. It is irradiated with light of different wavelengths, and the maximum kinetic energy of ejected electrons is measured. Part A: What is the maximum kinetic energy of ejected electron when 390-nm light is used? Part B:vWhat is the maximum electron speed when 390-nm light is used? Part C: Does 750-nm light have enough energy to eject an electron from the metal?
The photoelectric work function of potassium is 2.1 eV. If light that has a wavelength of...
The photoelectric work function of potassium is 2.1 eV. If light that has a wavelength of 180 nm falls on potassium Part A: Find the stopping potential for light of this wavelength (V = ______ units) Part B: Find the kinetic energy, in electron volts, of the most energetic electrons ejected (K = ______ eV) Part C: Find the speeds of these electrons (vmax = ______ units)
light of 380 nm wavelength is directed at a metal electrode. to determine the energy of...
light of 380 nm wavelength is directed at a metal electrode. to determine the energy of electrons ejected, an opposing electrostatic potential difference is established between it and another electrode, the current of photoelectrons from one to the other is stopped completely when the potential difference is 1.1 V a) determine the work function of the metal b) determine the max wavelength light that can eject electron from this metal.
A bright star 20 light-years away emits violet light with wavelength of 380 nm as seen...
A bright star 20 light-years away emits violet light with wavelength of 380 nm as seen from the earth. A spaceship is covered with tinanium on its surface, whose work function is 4.3 eV. a) When the spaceship is stationed on earth, determine whether photoelectrons are ejected from the spaceship due to the violet starlight. If so, compute their maximum kinetic energy. b) The spaceship has just departed earth (with negligible travel distance so far) and is flying towards the...
Energy, Wavelength, Frequency Problem: Show your work neatly and methodically. Consider an electron in the hydrogen...
Energy, Wavelength, Frequency Problem: Show your work neatly and methodically. Consider an electron in the hydrogen atom giving off light which has a wavelength of 625 nm, according to the Balmer Series. a) From what energy level in the hydrogen atom did the electron fall to emit this light? b) What is the frequency of this light? c) What is the energy of this light? 2. a) Use the de Broglie relationship to determine the wavelength of a 85 kg...
3. What is the wavelength (in nm) and frequency of light that is emitted when an...
3. What is the wavelength (in nm) and frequency of light that is emitted when an electron in a hydrogen atom drops from the n = 5 to the n = 3 energy level
What is the binding energy of a substance where the longest wavelength that can eject electrons...
What is the binding energy of a substance where the longest wavelength that can eject electrons from it is 400 nm? If you hit this same substance with light that was 200nm, what would be the speed of an ejected electron?
When monochromatic light of an unknown wavelength falls on a sample of silver, a minimum potential...
When monochromatic light of an unknown wavelength falls on a sample of silver, a minimum potential of 2.55 V is required to stop all of the ejected photoelectrons. (The work function for silver is 4.73 eV.) HINT (a) Determine the maximum kinetic energy (in eV) of the ejected photoelectrons.   eV (b) Determine the maximum speed (in m/s) of the ejected photoelectrons.   m/s (c) Determine the wavelength in nm of the incident light.   nm
When monochromatic light of an unknown wavelength falls on a sample of silver, a minimum potential...
When monochromatic light of an unknown wavelength falls on a sample of silver, a minimum potential of 2.50 V is required to stop all of the ejected photoelectrons. Determine the (a) maximum kinetic energy and (b) maximum speed of the ejected photoelectrons. (c) Determine the wavelength in nm of the incident light. (The work function for silver is 4.73 eV.)