Question

Calculate the pre-equilibrium concentration of Fe3+(aq) in a solution made by mixing 1.7 mL of 2.0 ...

Calculate the pre-equilibrium concentration of Fe3+(aq) in a solution made by mixing 1.7 mL of 2.0 ✕ 10−3 M Fe(NO3)3 and 8.3 mL of 2.0 ✕ 10−3 M NaSCN. Assume the final volume is 10.0 mL.

i wasnt suere on whether i should compose an ice table for this problem? An explaination of this problem through a solution would be helpful.

Homework Answers

Answer #1

The term pre-equilibrium concentration is not very clear to me. You can calculate the exact concentration of any reactant at any point of the reaction from the knowledge of the kinetics of the reaction. I think here you are supposed to calculate simply the concentration of Fe3+ in the reaction mixture before the reaction starts, i.e., at t =0. For that you don't need an ICE chart.

You have used 1.7 mL of 2.0 ✕ 10−3 M Fe(NO3)3 and total volume after mixing is 10 mL .

Use the equation to calculate the final concentration: V1S1 = V2S2

where , V1 = initial volume = 1.7 mL

S1 = initial concentration before mixing = 2.0 ✕ 10−3 M

V2 = final volume = 10 mL

S2 = concentration after mixing (before the reaction starts)

So, S2 = V1S1 / V2 = [(1.7 mL) *( 2.0 ✕ 10−3 M)] / 10 mL

= 3.4*10-4 M

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An equilibrium solution is prepared by mixing 2.750 mL of 0.001650 M SCN-, 5.000 mL of...
An equilibrium solution is prepared by mixing 2.750 mL of 0.001650 M SCN-, 5.000 mL of 0.001650 M Fe3+, and 2.750 mL of 0.05000 M HNO3. The equilibrium solution’s absorbance is determined to be 0.9150. Using this absorbance value and a standard curve, you determine that the equilibrium concentration of Fe(SCN)2+ is 0.0001830 M. Prepare an ICE table for the equilibrium mixture. Include the initial concentrations, changes in concentrations, and the equilibrium concentrations of Fe3+, SCN- and Fe(SCN)2+. Using the...
A reaction mixture is formed by mixing 2.0 mL of 0.010 M Fe3+ and 2.0 mL...
A reaction mixture is formed by mixing 2.0 mL of 0.010 M Fe3+ and 2.0 mL of 0.010 M SCN–, and the diluting the solution to a total volume of 25.0 mL. Calculate the initial concentrations of Fe3+ and SCN– under these conditions. Some experiments have indicated that this reaction has an equilibrium constant, Kf , of approximately 300. Use the value of Kf = 300 to calculate the equilibrium concentrations of all three species given the initial concentrations from...
Suppose that the reaction of Fe3+ and SCN– produces Fe(SCN)2+. 5.00 mL of 2.0 mM Fe3+...
Suppose that the reaction of Fe3+ and SCN– produces Fe(SCN)2+. 5.00 mL of 2.0 mM Fe3+ (aq) is mixed with 5.00 mL of 2.0 mM SCN– (aq). The student finds the equilibrium concentration of Fe(SCN)2+ to be 0.3 mM. 1. Write a balanced chemical equation for this reaction in solution. 2. Write an equilibrium constant expression for the reaction. 3. What is the initial number of moles of each species present? 4. What is the equilibrium number of moles of...
2.) FeSCN2+ equilibrium concentration was found to be 3.20 x 10-5 M in a solution made...
2.) FeSCN2+ equilibrium concentration was found to be 3.20 x 10-5 M in a solution made by mixing 5.00 mL of 1.00 x 10-3 M Fe(NO3)3 with 5.00 mL of 1.00 x 10-3 M HSCN. The H+ concentration is maintained at 0.500 M at all times since the HSCN and Fe3+ solutions were prepared using 0.500 M HNO3 in place of distilled water. a. How many moles FeSCN2+ are present at equilibrium? b. How many moles each of Fe3+ and...
3a. Suppose that 5.0 mL of a 0.0030M solution of Fe3+ is mixed with 10.0 mL...
3a. Suppose that 5.0 mL of a 0.0030M solution of Fe3+ is mixed with 10.0 mL of a 0.0060 M solution of SCN-. If the final equilibrium Fe(SCN)2+ concentration is measured to be 0.00524M, what are the final equilibrium concentrations for the other two species? 3b. Using the results from question 3a above, calculate the equilibrium constant K for the formation of Fe(SCN)2+ from SCN- and Fe3+.
Consider the following reaction: Fe3+(aq)+SCN−(aq)⇌FeSCN2+(aq) A solution is made containing an initial [Fe3+] of 1.0×10^−3 M...
Consider the following reaction: Fe3+(aq)+SCN−(aq)⇌FeSCN2+(aq) A solution is made containing an initial [Fe3+] of 1.0×10^−3 M and an initial [SCN−] of 7.8×10^−4 M . At equilibrium, [FeSCN2+]= 1.7×10^−4 M . Part A Calculate the value of the equilibrium constant (Kc). Express your answer using two significant figures. Kc =
From her Beer's Law plot in part A, a student obtained a best fit line of...
From her Beer's Law plot in part A, a student obtained a best fit line of y=4.11 x 103x + 0.00 For part B, she made up a series of solutions. One solution had the following composition and absorbance: Vol 2.00 x 10-3 M Fe(NO3)3 (mL)= 5.00 Vol of 2.00 x 10-3 M KSCN (mL)= 5.00 Vol of 0.5 M HNO3 (mL)= 0.00 Absorbance at 450 nm= 0.629 What is the initial concentration of Fe(NO3)3 in the solution (after mixing...
Calculate the concentration of H3O(aq) ions present at equilibrium in a solution that is prepared by...
Calculate the concentration of H3O(aq) ions present at equilibrium in a solution that is prepared by mixing 100 mL of .35 M HCN and 200 mL of .15 M NaCN. Kc= 6.2E-10 HCN(aq) + H2O <---> H3O(aq) + CN(aq) (this is an equation from a previous question used for this question also) Please so all work! Thanks!
1) A student mixes 5.00 mL of 2.00 x 10-3 M Fe(NO3)3 with 5.00 mL of...
1) A student mixes 5.00 mL of 2.00 x 10-3 M Fe(NO3)3 with 5.00 mL of 2.00 x 10-3 M KSCN. She finds that in the equilibrium mixture the concentration of FeSCN2+ is 1.40 x 10-4 M a) What is the initial concentration in solution of the Fe3+ and SCN- ? b) What is the equilibrium constant for the reaction? 2. Assume that the reaction studied is actually: Fe3+ (aq) + 2 SCN- (aq) ↔ Fe(SCN)2+ (aq) a) What is...
A mixture is made by combining 12.9 mL of 5.4×10−3 M KSCN, 8.3 mL of 2.2×10−2...
A mixture is made by combining 12.9 mL of 5.4×10−3 M KSCN, 8.3 mL of 2.2×10−2 M Fe(NO3)3, and 7.7 mL of 0.34 M HNO3. Calculate the concentraion of Fe3+ in the solution.