Question

What is the rate law for the following mechanism?                         CH3COOC2H5 + H2O → CH3COOC2H6+...

What is the rate law for the following mechanism?

                        CH3COOC2H5 + H2O → CH3COOC2H6+ + OH-                  (Slow)

                        CH3COOC2H6+          → CH3COOH + C2H5+                     (Fast)

                        C2H5+   +      OH-        → C2H5OH                                   (Fast)

A) Rate = k[CH3COOC2H5][H2O]2

B) Rate = k[C2H5OH]

C) Rate = k[CH3COOH]

D) Rate = k[CH3COOC2H5]

E) Rate = k[CH3COOC2H5][H2O]

The answer is E, but could you please give a detailed response on how to get to this answer? Thank you.

Homework Answers

Answer #1

rate equation can be written to the slowest step

that why we used to call rate determining step

in the above mechanism slow step is

CH3COOC2H5 + H2O → CH3COOC2H6+ + OH-                  (Slow)

so rate will be

E) Rate = k[CH3COOC2H5][H2O]

but if you talk strictly we will not even consider the concentration H2O because compare to ethyl acetate water concentration is too high so this reaction we used to call as psudo unimolecular reaction

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Determine the rate law that is consistent with the following mechanism: Step 1: OCl− + H2O...
Determine the rate law that is consistent with the following mechanism: Step 1: OCl− + H2O ⇄ HOCl + OH− (fast) Step 2: I− + HOCl  HOI + Cl− (slow) A) Rate = k[OCl−][H2O] B) Rate = k[I−][HOCl] C) Rate = k[OCl−][H2O][I−] D) Rate = k[OCl−][H2O]/[I−] E) Rate = k[OCl−][H2O]/[OH−] F) Rate = k[OCl−][H2O][I−]/[OH−]
Consider the following mechanism. (1) ClO−(aq) + H2O(l) equilibrium reaction arrow HClO(aq) + OH −(aq) [fast]...
Consider the following mechanism. (1) ClO−(aq) + H2O(l) equilibrium reaction arrow HClO(aq) + OH −(aq) [fast] (2) I −(aq) + HClO(aq) → HIO(aq) + Cl −(aq) [slow] (3) OH −(aq) + HIO(aq) → H2O(l) + IO−(aq) [fast] (a) What is the overall equation? (Use the lowest possible coefficients. Include states-of-matter under SATP conditions in your answer. (b) Identify the intermediate(s), if any. (Separate substances in a list with a comma. Omit states-of-matter in your answer.) (c) What are the molecularity...
The following mechanism has been suggested for the reaction: H2O2+2H+2I--->I2+H2O H2O2+I--->HOI+OH (SLOW) OH+H--->H2O (FAST) HOI+H+I--->I2+H2O (FAST)...
The following mechanism has been suggested for the reaction: H2O2+2H+2I--->I2+H2O H2O2+I--->HOI+OH (SLOW) OH+H--->H2O (FAST) HOI+H+I--->I2+H2O (FAST) Identify the molecularity of the rate determining step. please explain why.
Given the following proposed mechanism, predict the rate law for the overall reaction. 2 NO2 +...
Given the following proposed mechanism, predict the rate law for the overall reaction. 2 NO2 + Cl2 → 2 NO2Cl (overall reaction) Mechanism NO2 + Cl2 → NO2Cl + Cl slow NO2 + Cl → NO2Cl fast Given the following proposed mechanism, predict the rate law for the overall reaction. 2 NO2 + Cl2 → 2 NO2Cl (overall reaction) Mechanism NO2 + Cl2 → NO2Cl + Cl slow NO2 + Cl → NO2Cl fast Rate = k[NO2][Cl]2 Rate = k[NO2][Cl2]...
The rate law for the reaction: 2H2+2NO--->N2+2H2O is rate=k[H2][NO]^2. Which of the follwing mechanisms can be...
The rate law for the reaction: 2H2+2NO--->N2+2H2O is rate=k[H2][NO]^2. Which of the follwing mechanisms can be ruled out on the basis of the observed rate expression? PLEASE EXPLAIN Mechanism 1: H2+NO--->H2O+N (slow) / N+NO----->N2+O (fast) / O+H2----> N2+O (fast) Mechanism 2: H2+2NO---->N2O+H2O (slow) / N2O+H2---->N2+H2O (fast) Mechanism 3: 2NO<----->N2O2 (fast equilibrium) / N2O2+H2------>N2O+H2O (slow) / N2O+H2------>N2+H2O (fast) PLEASE EXPLAIN WHY.
Nitramide, NO2NH2, decomposes slowely in aqueous slution according to the following reaction: NO2NH2 (aq) ---> N2O...
Nitramide, NO2NH2, decomposes slowely in aqueous slution according to the following reaction: NO2NH2 (aq) ---> N2O (g) + H2O the reaction follows the rate law: Rate= k(NO2NH2)/(H3O+) *Omit H2O from the rate law that you determine from the Mechanisms* (a) Which of the following mechanisms is the most appropriate for the interpretation of this rate law? Justify your answer. Mechamism 1 NO2NH2 ---> N2O + H2O  rate constant = k1 Mechanism 2 NO2NH2 + H3O+ <---> NO2NH3+ + H2O Fast rate...
The mechanism of a reaction is shown below.             a) What is the overall reaction? b)...
The mechanism of a reaction is shown below.             a) What is the overall reaction? b) Which compounds are intermediates? c) Predict the rate law based on this mechanism. d) What is the overall order of the reaction?             HOOH + I¯      HOI + OH¯        (slow)             HOI + I¯    I2   +   OH¯                 (fast)             2OH¯   +   2H3O+ 4 H2O             (fast)
Based on the three step mechanism below, what is the rate law for the reaction 2A...
Based on the three step mechanism below, what is the rate law for the reaction 2A + 2B →E + G? A + B ⇌ D (Fast equilibrium) D + B →E + F ( slow) A + F → G (fast
The mechanism for the reaction 2 H2O2(aq) à 2 H2O(l) + O2(g) in the presence of...
The mechanism for the reaction 2 H2O2(aq) à 2 H2O(l) + O2(g) in the presence of I–(aq) is proposed to be: Step 1: H2O2(aq) + I–(aq) à H2O(l) + OI–(aq)                                   (slow) Step 2: H2O2(aq) + OI–(aq) à H2O(l) + O2(g) + I–(aq)                       (fast) What is the rate law for the overall reaction?             a. Rate = k[H2O2]2             b. Rate = k[H2O2][I–]             c. Rate = k[H2O2]2[I–]/[H2O]             d. Rate = k[H2O2][OI–]             e. Rate = k[H2O2]
Consider the following proposed mechanisms for Reaction (1): Mechanism A (one step): H2O2 + 2I- +...
Consider the following proposed mechanisms for Reaction (1): Mechanism A (one step): H2O2 + 2I- + 2H3O+ à I2 + 4H2O Reaction (1) Mechanism B (three steps) H2O2 + I- à OH- + HOI (slow) H3O+ + OH- ßà 2H2O (fast) HOI + H3O+ + I- à I2 + H2O (fast) a) Show that when you sum the three elementary steps, the net result of Mechanism B is Reaction (1): b) What would be the expected rate law for mechanism...