Question

Q1: The entropy of sublimation of a certain compound is 5.2 J K–1 mol–1 at its...

Q1: The entropy of sublimation of a certain compound is 5.2 J K–1 mol–1 at its normal sublimation point of 72 °C. Calculate the vapour pressure (in torr) of the compound at 33 °C. Assume that the enthalpy of sublimation is constant.

I get 1586.851385 torr

Q2:

Compound       So (J K–1 mol–1)
A 20
B 96
C 74
D 36

At 298 K, ΔGo is 129 kJ / mol for the reaction

3A + 2B == 2C + 2D

Calculate ΔHo for this reaction in kJ / mol.

I get 138.536 for this one

Can anyone help me to check it?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Given the values of So given below in J/mol K and the values of ΔHfo...
1. Given the values of So given below in J/mol K and the values of ΔHfo given in kJ/mol, calculate the value of ΔGo in kJ for the combustion of 1 mole of butane to form carbon dioxide and gaseous water at 298 K. S (C4H10(g)) = 273 S (O2(g)) = 208 S (CO2(g)) = 214 S (H2O(g)) = 189 ΔHfo (C4H10(g)) = -123 ΔHfo (CO2(g)) = -394 ΔHfo (H2O(g)) = -223 2. A particular reaction has a ΔHo value...
Calculate the entropy of fusion of a compound at 25°C given that its enthalpy of fusion...
Calculate the entropy of fusion of a compound at 25°C given that its enthalpy of fusion is 32 kJ mol−1 at its melting point of 146°C and the molar heat capacities (at constant pressure) of the liquid and solid forms are 28 J K−1 mol−1 and 19 J K−1 mol−1, respectively.
Calculate the entropy of fusion of a compound at 25°C given that its enthalpy of fusion...
Calculate the entropy of fusion of a compound at 25°C given that its enthalpy of fusion is 32 kJ mol−1 at its melting point of 146°C and the molar heat capacities (at constant pressure) of the liquid and solid forms are 28 J K−1 mol−1 and 19 J K−1 mol−1, respectively.
Consider the 0.5 mol sublimation of solid A described below: A (solid, 1 bar, 750 K)...
Consider the 0.5 mol sublimation of solid A described below: A (solid, 1 bar, 750 K) ⇄ A (gas, 1 bar, 750 K) Since the sublimation enthalpy of A is 481.2 J / mol, determine ΔU (in J). * 1/1 -2877 0.96 -9353 procedure please
HgO(s) Hg(g) O2(g) Enthaply Delta H kj/mol -90.8 61.3 Entropy Delta S   j/mol. K 70.3 174.9...
HgO(s) Hg(g) O2(g) Enthaply Delta H kj/mol -90.8 61.3 Entropy Delta S   j/mol. K 70.3 174.9 205.0 Above is a table of thermodynamics date for the chemical species in the reaction: 2HgO(s) ----> 2Hg(g)+ O2(g) at 25 C A) Calculate the molar entropy of reaction at 25 C B) Calculate the standard Gibbs free enregy of the reaction at 25 C given that the enthaply of reaction at 25 C is 304.2 Kj/mol C)Calculate the equilibrium constant for the reaction...
Consider the reaction at 298 K: N2 (g) + 2 O2 (g) --> 2 NO2 (g)...
Consider the reaction at 298 K: N2 (g) + 2 O2 (g) --> 2 NO2 (g) The value of ΔHo formation of NO2 (g) is known to be 34.0 kJ/mol, while the value of K is 5.86 x 10-19. Determine the absolute entropy of N2 (g) at 298 K if So O2 = 205 J/K mol and So NO2 = 240 J/K mol. (a) 76.3 J/K (b) 133 J/k (c) 190 J/K (d) 304 J/K (e) 507 J/K
a. The standard enthalpy of vaporization of an inorganic compound is 38.9 kJ/mol. If the temperature...
a. The standard enthalpy of vaporization of an inorganic compound is 38.9 kJ/mol. If the temperature at which this phase change occurs is 221.72 °C, determine ΔS°vap (in J/mol/K) for this compound. Report your answer to three significant figures. b. The entropy of freezing of an organic compound is -21.0 J/mol/K. If ΔH°freez is -14.01 kJ/mol, determine the temperature (in K) at which this phase change occurs. Report your answer to two decimal places
1. Given the values of ΔGfo given below in kJ/mol, calculate the value of ΔGo in...
1. Given the values of ΔGfo given below in kJ/mol, calculate the value of ΔGo in kJ for the combustion of 1 mole of methane to form carbon dioxide and gaseous water. ΔGfo (CH4(g)) = -48 ΔGfo (CO2(g)) = -395 ΔGfo (H2O(g)) = -236 2. Given the values of So given below in J/mol K and of ΔHfo given in kJ/mol, calculate the value of ΔGo in kJ for the combustion of 1 mole of ethane to form carbon dioxide...
A) The ΔHvap of a certain compound is 42.25 kJ·mol–1 and its ΔSvap is 67.47 J·mol–1·K–1....
A) The ΔHvap of a certain compound is 42.25 kJ·mol–1 and its ΔSvap is 67.47 J·mol–1·K–1. What is the boiling point of this compound? B) For a particular reaction, ΔH° is -13.9 kJ/mol and ΔS° is -41.6 J/(mol·K). Assuming these values change very little with temperature, over what temperature range is the reaction spontaneous in the forward direction?
Consider the following data at 298 K: Compound ∆Hf° (kJ mol−1) H2S (g) -20.5 H2O (g)...
Consider the following data at 298 K: Compound ∆Hf° (kJ mol−1) H2S (g) -20.5 H2O (g) -242 For the reaction   4 Ag(s) + 2 H2S(g) + O2(g) --> 2 Ag2S(s) + 2 H2O(g)    at a temperature of 25 °C, ∆H° = −507 kJ Calculate the ∆Hf° of Ag2S (s) is (in kJ mol−1): -285.5 -32 -64 + 475
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT