Question

Calculate DH for the reaction 2C(s) + H2(g)                 C2H2(g) given the following chemical equations and their...

Calculate DH for the reaction

2C(s) + H2(g)                 C2H2(g)

given the following chemical equations and their respective enthalpy changes:

C2H2(g) +    O2(g)                2CO2(g) + H2O DH = -1299.6kJ

       C(s) + O2(g)         CO2(g)                         DH = -393.5kJ

      H2(g) +    O2(g)              H2O(l)                     DH = -285.8kJ

Please help!!! I am completely lost! How do I start, what are the steps?

Homework Answers

Answer #1

2CO2(g) + H2O(l) ----> C2H2(g) + 5/2O2(g)   DH = + 1299.6kJ

2C(s) + 2O2(g)   ---->    2CO2(g)                     DH = - 787kJ

H2(g) +    O2(g)   ----> H2O(l)                         DH = - 285.8kJ

By adding the above three equations

2C(s) + H2(g)   ----> C2H2(g)                  DH = + 226.8 KJ

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use Hess's Law to calculate the enthalpy of reaction, ΔH rxn, for the reaction in bold...
Use Hess's Law to calculate the enthalpy of reaction, ΔH rxn, for the reaction in bold below given the following chemical steps and their respective enthalpy changes. Show ALL work! 2 C(s) + H2(g) → C2H2(g) ΔH°rxn = ? 1. C2H2(g) + 5/2 O2(g) → 2CO2 (g) + H2O (l) ΔH°rxn = -1299.6 kJ 2. C(s) + O2(g) → CO2 (g) ΔH°rxn = -393.5 kJ 3. H2(g) + ½ O2(g) → H2O (l) ΔH°rxn = -285.8 kJ
For the reaction:                                 2 C (s) + H2(g) →C2H2(g) a) Calculate the enthalp
For the reaction:                                 2 C (s) + H2(g) →C2H2(g) a) Calculate the enthalpy of reaction (DHrxn) from the following reactions: Reaction                                                             Δ Hrxn(kJ/mol)2 C2H2(g)+ 5 O2(g) → 4 CO2(g) + 2 H2O (l)              -2599.2 C (s) + O2(g) → CO2(g)                                            - 393.5 2 H2(g) + O2(g) → 2H2O (l)                                      -571.8 b) If the DS for the reaction is equal to 652 J/mol, and the reaction proceeds at 25°C, would you expect the reaction to be spontaneous?
Hess’s Law b) Calculate the ∆H for the reaction: Ti(s) + 2Cl2 (g) → TiCl4 (l)...
Hess’s Law b) Calculate the ∆H for the reaction: Ti(s) + 2Cl2 (g) → TiCl4 (l) Using the following chemical equations and their respective enthalpy changes: Ti(s) + 2Cl2 (g) → TiCl4 (g) ∆H = -763 kJ TiCl4 (l) → TiCl4 (g) ∆H = 41 kJ b) Calculate the ∆H for the reaction: 2CO(g) + O2 (g) → 2CO2 (g) Using the following chemical equations and their respective enthalpy changes: 2C(s) + O2 (g) → 2CO(g) ∆H = -221.0 kJ...
Given the following data: H2(g) + 1/2O2(g) → H2O(l) ΔH° = -286.0 kJ C(s) + O2(g)...
Given the following data: H2(g) + 1/2O2(g) → H2O(l) ΔH° = -286.0 kJ C(s) + O2(g) → CO2(g) ΔH° = -394.0 kJ 2CO2(g) + H2O(l) → C2H2(g) + 5/2O2(g) ΔH° = 1300.0 kJ Calculate ΔH° for the reaction: 2C(s) + H2(g) → C2H2(g)
1. Given the enthalpies of combustion of acetylene (C2H2), carbon and hydrogen,                 2 C2H2(g) + 5...
1. Given the enthalpies of combustion of acetylene (C2H2), carbon and hydrogen,                 2 C2H2(g) + 5 O2(g) → 4 CO2(g) + 2 H2O(l)                    ∆Ho = -2600 kJ                 C(s) + O2(g) → CO2(g)                                                       ∆Ho = -394 kJ                 2 H2(g) + O2 → 2 H2O(l)                                                    ∆Ho = -572 kJ Calculate the enthalpy of formation of acetylene. The reaction is shown below.                   2 C(s) + H2(g) → C2H2(g) 2. A student carefully measures out 200.0 mL of an aqueous solution of 1.0 M HCl in a...
Consider the chemical reaction given. The initial concentrations of CO (g) and H2O (g) are 0.35...
Consider the chemical reaction given. The initial concentrations of CO (g) and H2O (g) are 0.35 M and 0.40 M respectively (there is no CO2 of H2 present initially). At equilibrium it is found that the concentration of CO2(g) is 0.19 mol/L. What is the value of the equilibrium constant for this reaction? CO(g)+H2O(g)-><- CO2(g) +H2 (g) a. 1.1 b. 0.9 c. 0.56 d. 0.40 e. 0.36 The key says the answer is A, but I do not know how...
A) If 30.8 g of O2 are mixed with 30.8 g of H2 and the mixture...
A) If 30.8 g of O2 are mixed with 30.8 g of H2 and the mixture is ignited, what mass of water is produced? B) Iron is produced from its ore by the reactions: 2C(s)+O2(g) → 2CO(g) Fe2O3(s)+3CO(g) → 2Fe(s) + 3co2(g) How many moles of O2(g) are needed to produce 9.5 moles of Fe(s)? C) Which of the following equations correctly describes the combustion of CH4and O2to produce water (H2O) and carbon dioxide (CO2)? a)     CH4 + O2 ...
Given the following reactions and their associated enthalpy changes    CO2 (g) →      C (s) +...
Given the following reactions and their associated enthalpy changes    CO2 (g) →      C (s) + O2 (g)                          ΔH = 393.5 kJ C3H8 (g) + 5 O2 (g) →     3 CO2 (g) + 4 H2O (g)   ΔH = -2044 kJ     H2 (g) + 1/2 O2 (g) →        H2O (g)                     ΔH = -241.8 kJ calculate the enthalpy change for the following reaction: 4 H2 (g) + 3 C (s)→ C3H8 (g)
Calculate the standard enthalpy of reaction for 2 C(graphite) + 3 H2(g) C2H6(g) Given the following...
Calculate the standard enthalpy of reaction for 2 C(graphite) + 3 H2(g) C2H6(g) Given the following standard enthalpy of combustion data, ∆H˚comb (C(graphite) = –393.5 kJ·mol–1 H2(g) + ½ O2(g) H2O(l) ∆H˚rxn = –285.8 kJ·mol–1 2 C2H6(g) + 7 O2(g) 4 CO2(g) + 6 H2O(l) ∆H˚rxn = –3119.6 kJ·mol–1 (a) –84.6 kJ·mol–1 (b) 2440.2 kJ·mol–1 (c) –3799.0 kJ·mol–1 (d) –224.5 kJ·mol–1(e) not enough information provided
1. Consider the following chemical reaction: 2CH3OH(l) + 3O2 (g) → 2CO2 (g) + 4H2O(l) Calculate...
1. Consider the following chemical reaction: 2CH3OH(l) + 3O2 (g) → 2CO2 (g) + 4H2O(l) Calculate the number of moles of CO2 produced when 11.25 mL of methanol CH3OH reacted completely with O2 (g). The density of methanol is 0.79 g/mL.