Question

Consider the reaction: H2 (g) + Br2 (g) ⇆ 2HBr (g). What is the expression for...

Consider the reaction: H2 (g) + Br2 (g) ⇆ 2HBr (g). What is the expression for Kc for this reaction?

Consider the reaction: H2 (g) + Br2 (g) ⇆ 2HBr (g) If the value of the equilibrium constant is very large, which species will predominate at equilibrium?

Consider the reaction: Ti (s) + 2Cl2 (g) ⇆ TiCl4 (l) What is the expression for Kc for this reaction?

Homework Answers

Answer #1

1)

Kc is defined as concentration of product by concentration of reactant with each concentration term raised to power that is equal to its stoichiometric coefficient in balanced equation

pure liquid and solid do not appear in Kc

so,

Kc = [HBr]^2 / [H2][Br2]

Answer: Kc = [HBr]^2 / [H2][Br2]

2)

If Kc is very large, it means that there is large amount of product.

So, HBr would be in larger quantity.

Answer: HBr

3)

pure liquid and solid do not appear in Kc

So, Ti(s) and TiCl4(l) will not appear in Kc expression

So,

Kc = 1/[Cl2]^2

Answer: Kc = 1/[Cl2]^2

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The equilibrium constant Kc for the reaction H2(g) + Br2(g) ⇆ 2HBr(g) is 2.180 × 106...
The equilibrium constant Kc for the reaction H2(g) + Br2(g) ⇆ 2HBr(g) is 2.180 × 106 at 730°C. Starting with 5.20 moles of HBr in a 12.9−L reaction vessel, calculate the concentrations of H2, Br2, and HBr at equilibrium.
The equilibrium constant Kc for the reaction H2(g) + Br2(g) ⇆ 2HBr(g) is 2.180×106 at 730°...
The equilibrium constant Kc for the reaction H2(g) + Br2(g) ⇆ 2HBr(g) is 2.180×106 at 730° C. Starting with 4.20 moles of HBr in a 17.8−L reaction vessel, calculate the concentrations of H2,Br2, and HBr at equilibrium. 17. The equilibrium constant Kc for the reaction below is 0.00771 at a certain temperature. Br2(g) ⇌ 2Br(g) If the initial concentrations are [Br2] = 0.0433 M and [Br] = 0.0462 M, calculate the concentrations of these species at equilibrium. For the reaction...
20. The equilibrium constant Kc for the reaction H2(g) + Br2(g) ⇆ 2HBr(g) is 2.180 ×...
20. The equilibrium constant Kc for the reaction H2(g) + Br2(g) ⇆ 2HBr(g) is 2.180 × 106 at 730°C. Starting with 4.20 moles of HBr in a 17.8−L reaction vessel, calculate the concentrations of H2, Br2, and HBr at equilibrium. [H2] = M [Br2] = M [HBr] = M
The equilibrium constant Kc for the following reaction is 2.18 x10^6 at 730°C.? H2(g)+Br2(g) <--->2HBr(g)   Starting...
The equilibrium constant Kc for the following reaction is 2.18 x10^6 at 730°C.? H2(g)+Br2(g) <--->2HBr(g)   Starting with 1.20 moles of HBr in a 19.5 L reaction vessel, calculate the concentrations of H2, Br2, and HBr at equilibrium. M?
At 730°C the Kc for the reaction H2(g)+ Br2(g)<--->2HBr(g) is 2.18x10^6. If 3.25mol HBr(g) is placed...
At 730°C the Kc for the reaction H2(g)+ Br2(g)<--->2HBr(g) is 2.18x10^6. If 3.25mol HBr(g) is placed in a 12.0 L reaction vessel at this temperature, how many moles of each of the three gases will be present at equilibrium?
Consider the reaction below and its Kp value at 350K: H2(g)   +   Br2(g)   <--->   2HBr(g)       Kp =...
Consider the reaction below and its Kp value at 350K: H2(g)   +   Br2(g)   <--->   2HBr(g)       Kp = 3.5 x 104 If the partial pressures of H2 = 0.024 atm and HBr = 5.07 atm, what is the equilibrium partial pressure of Br2? a. 12 atm b. 4.7 atm c. 0.26 atm d. 0.031 atm
The equilibrium constant Kc for the following reaction is 4.59 × 10-7 at 730oC. 2HBr(g) ⇌...
The equilibrium constant Kc for the following reaction is 4.59 × 10-7 at 730oC. 2HBr(g) ⇌ H2(g) + Br2(g) Suppose 3.20 mol HBr and 1.50 mol H2 are added to a rigid 12.0-L flask at 730oC. What is the equilibrium concentration (in M) of Br2?
Consider a reaction: 2HBr(g)H2(g) + Br2(g) Express the rate of reaction with respect to each of...
Consider a reaction: 2HBr(g)H2(g) + Br2(g) Express the rate of reaction with respect to each of the reactants and products. In the first 15.0s of this reaction, the concentration of HBr dropped from 0.500M to 0.455M. Calculate the average rate of the reaction in this time interval.
For the reaction: H2(g) + Br2(g) ⇌ 2 HBr(g), Kc = 7.5 × 102 at a...
For the reaction: H2(g) + Br2(g) ⇌ 2 HBr(g), Kc = 7.5 × 102 at a certain temperature. If 2 mole each of H2 and Br2 are placed in 2-L flask, what is the concentration of H2 at equilibrium? A) 0.96 B) 0.93 C) 1.86 D)0.04 E) 0.07
For the reaction H2 + Br2 --> 2HBr, we know that [Br2] decreases by 0.5M during...
For the reaction H2 + Br2 --> 2HBr, we know that [Br2] decreases by 0.5M during the first 50s. What is the average reaction rate during this time?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT