Question

Answer the following questions using the chemical reaction and thermochemical information given below: Cl2(g) + C5H8(g)...

Answer the following questions using the chemical reaction and thermochemical information given below:

Cl2(g) + C5H8(g) ⇌ 1C5H6(g) + 2HCl(g)

ΔHf° (kJ/mol) S° (J mol-1 K-1)

C5H6 139.00 274.47

HCl   -92.31 186.90

Cl2 0.00 223.08

C5H8 36.00 289.66

1. Determine ΔG°rx (in kJ) for this reaction at 1474.8 K. Assume ΔH°f and S° do not vary as a function of temperature. Report your answer to two decimal places

2. Determine the equilibrium constant for this reaction. Report your answer to three significant figures in scientific notation.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Answer the following questions using the chemical reaction and thermochemical information given below: Br2(g) + C5H8(g)...
Answer the following questions using the chemical reaction and thermochemical information given below: Br2(g) + C5H8(g) ⇌ 1C5H6(g) + 2HBr(g) ΔHf° (kJ/mol)     S° (J mol-1 K-1) C5H6 139.00 274.47 HBr -36.29 198.70 Br2 30.9 245.5 C5H8 36.00 289.66 1. Determine ΔG°rx (in kJ) for this reaction at 1212 K. Assume ΔH°f and S° do not vary as a function of temperature. Report your answer to two decimal places 2. Determine the equilibrium constant for this reaction. Report your answer...
Answer the following questions using the chemical reaction and thermochemical information given below: CH3OH(g) ⇌ 2H2(g)...
Answer the following questions using the chemical reaction and thermochemical information given below: CH3OH(g) ⇌ 2H2(g) + CO(g) ΔHf° (kJ/mol)     S° (J mol-1 K-1) CH3OH -201.50 239.80 H2 0.00 130.68 CO -110.53 197.66 1. Determine ΔG°rx (in kJ) for this reaction at 1173.15 K. Assume ΔH°f and S° do not vary as a function of temperature. ***Report your answer to two decimal places 2. Determine the equilibrium constant for this reaction. ***Report your answer to three significant figures in...
Answer the following questions using the chemical reaction and thermochemical information given below: C2H5I(g) + HI(g)...
Answer the following questions using the chemical reaction and thermochemical information given below: C2H5I(g) + HI(g) ⇌ 1C2H6(g) + I2(g) ΔHf° (kJ/mol)     S° (J mol-1 K-1) C2H6 -83.85 229.20 I2 62.42 260.69 C2H5I -7.70 306.00 HI 26.36 206.59 1. Determine ΔG°rx (in kJ) for this reaction at 8339.9 K. Assume ΔH°f and S° do not vary as a function of temperature. Report your answer to two decimal places 2. Determine the equilibrium constant for this reaction. Report your answer...
Using the following thermochemical data, calculate ΔHf° of Cr2O3(s). 2CrCl3(s) + 3H2O(l) → Cr2O3(s) + 6HCl(g)...
Using the following thermochemical data, calculate ΔHf° of Cr2O3(s). 2CrCl3(s) + 3H2O(l) → Cr2O3(s) + 6HCl(g) ΔH° = 276.9 kJ/mol 2Cr(s) + 3Cl2(g) → 2CrCl3(s) ΔH° = -1113.0 kJ/mol 4HCl(g) + O2(g) → 2Cl2(g) + 2H2O(l) ΔH° = -202.4 kJ/mol
Calculate ΔG∘ (in kJ/mol) for the following reaction at 1 atm and 25 °C: C2H6 (g)...
Calculate ΔG∘ (in kJ/mol) for the following reaction at 1 atm and 25 °C: C2H6 (g) + O2 (g)  → CO2 (g) + H2O (l) (unbalanced) ΔHf C2H6 (g) = -84.7 kJ/mol; S C2H6 (g) = 229.5 J/K⋅mol; ΔHf ∘ CO2 (g) = -393.5 kJ/mol; S CO2 (g) = 213.6 J/K⋅mol; ΔHf H2O (l) = -285.8 kJ/mol; SH2O (l) = 69.9 J/K⋅mol; SO2 (g) = 205.0 J/K⋅mol
1) Given the following thermochemical reaction and thermodynamic data, find Gibbs Free Energy, ΔG, and determine...
1) Given the following thermochemical reaction and thermodynamic data, find Gibbs Free Energy, ΔG, and determine if the reaction is spontaneous or non-spontaneous at 25 °C? N2(g) + 3H2(g) → 2NH3(g) ΔH = -91.8 kJ ΔS[N2] = 191 J / mol · K, ΔS[H2] = 131 J / mol · K, and ΔS[NH3] = 193 J / mol · K a.98.3 kJ; Non-Spontaneous b.-98.3 kJ; Spontaneous c.32.7 kJ; Non-Spontaneous d.ΔG = -32.7 kJ; Spontaneous 2) What is the oxidation number...
1.Using the enthalpies of formation given below, calculate ΔH°rxn in kJ, for the following reaction. Report...
1.Using the enthalpies of formation given below, calculate ΔH°rxn in kJ, for the following reaction. Report your answer to two decimal places in standard notation. H2S(g) + 2O2(g) → SO3(g) + H2O(l) H2S (g): -20.60 kJ/mol O2 (g): 0.00 kJ/mol SO3 (g): -395.77 kJ/mol H2O (l): -285.83 kJ/mol 2. Calculate the amount of heat absorbed/released (in kJ) when 22.54 grams of SO3 are produced via the above reaction. Report your answer to two decimal places, and use appropriate signs to...
Calculate the standard enthalpy change, ΔH°rxn, in kJ for the following chemical equation, using only the...
Calculate the standard enthalpy change, ΔH°rxn, in kJ for the following chemical equation, using only the thermochemical equations below: 4KO2(s) + 2H2O(l) → 4KOH(aq) + 3O2(g) Report your answer to three significant figures in scientific notation. Equations:   ΔH°rxn (kJ) 4K(s) + O2(g) → 2K2O(s) -726.4 K(s) + O2(g) → KO2(s) -284.5 K2O(s) + H2O(l) → 2KOH(aq) -318
Ammonia is formed by the Haber process according to the following reaction: N2(g) + 3H2(g) ⇌...
Ammonia is formed by the Haber process according to the following reaction: N2(g) + 3H2(g) ⇌ 2NH3(g) Use the following data table to answer the questions below: Substance: ΔHf (kJ/mol) So (J/(mol*K) N2(g) 0    187.4 H2(g) 0 127.1 NH3(g) -47.3 197.6 Part 1: Using the table in the introduction, calculate the value of ΔH in units of kJ/mol. After, calculate the value of ΔS in units of J/(mol*K). Finally, cCalculate the value of ΔG in units of kJ/mol for...
1- Above what temperature is the following reaction spontaneous? N2O4(g) ↔ 2 NO2(g) ΔH° = 57.24...
1- Above what temperature is the following reaction spontaneous? N2O4(g) ↔ 2 NO2(g) ΔH° = 57.24 kJ/mol ΔS° = 175.5 J/mol∙K Group of answer choices 326 K 53.2 K 307 K 273 K 2- Predict the sign on ΔG for the following reaction when PI2 = PH2 = 0.01 atm and PHI = 1.0 atm. H2(g) + I2(g) ↔ 2 HI(g) ΔG° = -15.94 kJ/mol & Kp,298K = 620 Group of answer choices ΔG = 0 ΔG > 0 ΔG...