Question

Increasing the brightness of incoming light (irrespective of its frequency) increases the number of ejected electrons....

Increasing the brightness of incoming light (irrespective of its frequency) increases the number of ejected electrons. True or False. please explain.

Homework Answers

Answer #1

1. Brightness is the perceived Intensity of light coming from source. It can be measured in terms of the amplitude of the light being emitted from the source.

2. Increase in brightness means increase in the intensity of the incident light. Thus increase in brightness increases the number of ejected electrons .

3. As intensity of incident light is increased this means the number of photons that are incident on the surface are increased which will result in increase in number of ejected electrons.

Hence the ansean is " TRUE".

Dont forget to hit ?,.   

Thank you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1a. Is it surprising that electrons are ejected from a metal when light shines on the...
1a. Is it surprising that electrons are ejected from a metal when light shines on the metal? Please explain in your own words. 1b. Aside from the fact of an electron being ejected by light, are there aspects of the photoelectric effect that conflict with the classical physics of Newton and Maxwell? Please explain.
6. [8] (a) [4] Is it surprising that electrons are ejected from a metal when light...
6. [8] (a) [4] Is it surprising that electrons are ejected from a metal when light shines on the metal? Please explain in your own words. (b) [4] Aside from the fact of an electron being ejected by light, are there aspects of the photoelectric effect that conflict with the classical physics of Newton and Maxwell? Please explain.
The photoelectric effect describes electrons being ejected from a metal. Assume that a wavelength of light...
The photoelectric effect describes electrons being ejected from a metal. Assume that a wavelength of light has caused electrons to be emitted from a metal. a. What would be observed if only the intensity of the light is increased? b. What would be observed if only the frequency of the light was increased?
Photoelectrons are ejected when monochromatic light shines on a sodium surface. In order to obtain the...
Photoelectrons are ejected when monochromatic light shines on a sodium surface. In order to obtain the maximum increase in the number of electrons ejected per second, the experimenter needs to a. increase the frequency of the light. b. increase the intensity of the light. c. increase the area illuminated by the light. d. do all of the above. e. do only (b) and (c) above. ** Brief Explanation Please.
When light of frequency f is shined on a given metal, electrons of maximum kinetic energy...
When light of frequency f is shined on a given metal, electrons of maximum kinetic energy of 3.25 eV are ejected from the metal. When light of frequency 4f is shined on the same metal, electrons of maximum energy 15.65 eV are ejected from the metal. Question: What is the work function of the metal?
The minimum frequency of light needed to eject electrons from a metal is called the threshold...
The minimum frequency of light needed to eject electrons from a metal is called the threshold frequency, ν0. Find the minimum energy needed to eject electrons from a metal with a threshold frequency of 3.35 × 1014 s–1. With what maximum kinetic energy will electrons be ejected when this metal is exposed to light with a wavelength of λ = 265 nm?
The minimum frequency of light needed to eject electrons from a metal is called the threshold...
The minimum frequency of light needed to eject electrons from a metal is called the threshold frequency, ν0. Find the minimum energy needed to eject electrons from a metal with a threshold frequency of 2.05 × 1014 s–1. With what maximum kinetic energy will electrons be ejected when this metal is exposed to light with a wavelength of λ = 265 nm?
Light with a frequency of 2.21×10152.21×1015 Hz ejects electrons from the surface of calcium, which has...
Light with a frequency of 2.21×10152.21×1015 Hz ejects electrons from the surface of calcium, which has a work function of 2.87 eV. What is the minimum de Broglie wavelength of the ejected electrons?
A) Light of frequency 9.13 x 10^14 s-1 shines on the surface of a certain metal,...
A) Light of frequency 9.13 x 10^14 s-1 shines on the surface of a certain metal, Metal X. if the ejected electrons have a velocity of 6.13x10^5 m/s, what is the work function (binding energy) of Metal X? B) What is the longest wavelength of light (in nm) that can be used to eject electrons from the surface of Metal X? C) A different metal, Metal Y, has smaller binding energy. If the same frequency of light from Part A...
In the photoelectric effect, the light you are using causes electrons to be emitted from a...
In the photoelectric effect, the light you are using causes electrons to be emitted from a metal surface. Classify the following as true or false, regarding adjustments to the light. 1.If you increase the intensity of the light, you will increase the kinetic energies of the emitted electrons. 2.If you increase the frequency of the light, you will increase the kinetic energies of the emitted electrons. 3. If you increase the intensity of the light, you will increase the number...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT