Question

A 0.02350 M solution of NaCl in water is at 20degrees. The sample was created by...

A 0.02350 M solution of NaCl in water is at 20degrees. The sample was created by dissolving a sample of NaCl in water and then bringing the volume up to 1.000 L. It was determined that the volume of water needed to do this was 999.4ml The density of water @20 degrees is 0.9982g/mL.
Calculate the morality of the salt solution, the mole fraction of salt in this solution, the concentration of the salt solution in % by mass, & the concentration of the salt solution in parts per million?

Homework Answers

Answer #1

1,Mass of water in 999.4ml = 0.9982*999.4 gms=997.6 gms

Moles of water = 997.6/18=55.42

Moles of NaCl in 0.02350 in 1 L =0.02350 moles

Mass of NaCl =0.02350*58.5=1.374 gms

Molarity = moles of solute/ Liter of solution =0.02350M

2. Total moles = moles of water + moles of NaCl =55.42+0.02350=55.4435

Mole fraction= moles of NaCl/ Moles of solution= 0.02350/55.4435=0.000424

3. Total mass = mass of water + mass of NaCl = 997.6+1.375

=998.975 gms

Mass % of NaCl = 1.375/998.74=0.001376

4. mass of NaCl =1.375 gm/ 998.975gm =0.001376*106/106 =1376 ppm

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 2.650×10−2 M solution of NaCl in water is at 20.0∘C. The sample was created by...
A 2.650×10−2 M solution of NaCl in water is at 20.0∘C. The sample was created by dissolving a sample of NaCl in water and then bringing the volume up to 1.000 L. It was determined that the volume of water needed to do this was 999.3 mL . The density of water at 20.0∘C is 0.9982 g/mL. Calculate the mole fraction of salt in this solution.    Calculate the concentration of the salt solution in percent by mass. Calculate the...
A 2.250×10^−2 M solution of NaCl in water is at 20.0∘C. The sample was created by...
A 2.250×10^−2 M solution of NaCl in water is at 20.0∘C. The sample was created by dissolving a sample of NaCl in water and then bringing the volume up to 1.000 L. It was determined that the volume of water needed to do this was 999.4 mL . The density of water at 20.0∘C is 0.9982 g/mL. a. Calculate the molality of the salt solution. b. Calculate the mole fraction of salt in this solution. c. Calculate the concentration of...
A 2.650×10?2 M solution of NaCl in water is at 20.0?C. The sample was created by...
A 2.650×10?2 M solution of NaCl in water is at 20.0?C. The sample was created by dissolving a sample of NaCl in water and then bringing the volume up to 1.000 L. It was determined that the volume of water needed to do this was 999.3 mL . The density of water at 20.0?C is 0.9982 g/mL. Part A. Calculate the molality of the salt solution. Part B.Calculate the mole fraction of salt in this solution Part C Calculate the...
A 2.450×10−2M solution of NaCl in water is at 20.0∘C. The sample was created by dissolving...
A 2.450×10−2M solution of NaCl in water is at 20.0∘C. The sample was created by dissolving a sample of NaCl in water and then bringing the volume up to 1.000 L. It was determined that the volume of water needed to do this was 999.3 mL . The density of water at 20.0∘C is 0.9982 g/mL. Part A Calculate the molality of the salt solution. Part B Calculate the mole fraction of salt in this solution. Part C Calculate the...
A 2.350×10−2 M solution of NaCl in water is at 20.0∘C. The sample was created by...
A 2.350×10−2 M solution of NaCl in water is at 20.0∘C. The sample was created by dissolving a sample of NaCl in water and then bringing the volume up to 1.000 L. It was determined that the volume of water needed to do this was 999.4 mL . The density of water at 20.0∘C is 0.9982 g/mL. Calculate the concentration of the salt solution in percent by mass.
A 2.100×10−2 M solution of NaCl in water is at 20.0∘C. The sample was created by...
A 2.100×10−2 M solution of NaCl in water is at 20.0∘C. The sample was created by dissolving a sample of NaCl in water and then bringing the volume up to 1.000 L. It was determined that the volume of water needed to do this was 999.4 mL . The density of water at 20.0∘C is 0.9982 g/mL. Part A Calculate the molality of the salt solution. Express your answer to four significant figures and include the appropriate units. Part B...
A 2.050×10−2M solution of NaCl in water is at 20.0∘C. The sample was created by dissolving...
A 2.050×10−2M solution of NaCl in water is at 20.0∘C. The sample was created by dissolving a sample of NaCl in water and then bringing the volume up to 1.000 L. It was determined that the volume of water needed to do this was 999.4 mL . The density of water at 20.0∘C is 0.9982 g/mL. Part A Calculate the molality of the salt solution. Express your answer to four significant figures and include the appropriate units. Part B Calculate...
1) Use Henry's law to determine the molar solubility of helium at a pressure of 1.9...
1) Use Henry's law to determine the molar solubility of helium at a pressure of 1.9 atm and 25 ∘C. Henry’s law constant for helium gas in water at 25 ∘C is 3.70⋅10−4M/atm. 2) A 2.800×10−2M solution of NaCl in water is at 20.0∘C. The sample was created by dissolving a sample of NaCl in water and then bringing the volume up to 1.000 L. It was determined that the volume of water needed to do this was 999.2 mL...
A solution is prepared by dissolving 20.2 mL of methanol in 100.0 mL of water. The...
A solution is prepared by dissolving 20.2 mL of methanol in 100.0 mL of water. The final volume of this solution is 118ml. The densities of methanol and water are 0.782 g/mL and 1.00 g/mL, respectively. For this solution, calculate the following- molarity molality mass % MOLE FRACTION VOLUME OF SOLVENT MASS OF SOLVENT MOLES OF SOLVENT VOLUME OF SOLUTE MOLES OF SOLUTE MASS OF SOLUTE VOLUME OF SOLUTION MASS OF SOLUTION
What mass of salt (NaCl) should you add to 1.40 L of water in an ice...
What mass of salt (NaCl) should you add to 1.40 L of water in an ice cream maker to make a solution that freezes at -11.2 ∘C ? Assume complete dissociation of the NaCl and density of 1.00 g/mL for water.        
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT