Question

A patient is given 0.045 mg of technetium-99 m , a radioactive isotope with a half-life...

A patient is given 0.045 mg of technetium-99 m , a radioactive isotope with a half-life of about 6.0 hours. How long does it take for the radioactive isotope to decay to 8.0×10−4 mg ? (Assume no excretion of the nuclide from the body.)

Homework Answers

Answer #1

half life = 6 hours

rate constant = 0.693 / half -life

                      = 0.693 / 6

                      = 0.1155 hour-1

Ao = initial = 0.045 mg

At = 8.0 x 10^-4 mg

t = 1/k * ln (Ao /At)

t = 1 / 0.1155 * ln (0.045 / 8.0×10−4 )

t = 34.89 hours

time taken = 34.89 hours

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The radioactive isotope thorium 234 has a half-life of approximately 578 hours. If a sample has...
The radioactive isotope thorium 234 has a half-life of approximately 578 hours. If a sample has an initial mass of 64 mg, a function that models the mass in mg after t hours is a(t) =   The initial mass will decay to 12 mg after ______ hours Radioactive decay equation: a(t) = a0⋅2 ^ (−t / h) a0 = starting amount a(t) = amount after t hours h = half life in hours
The radioactive isotope 198Au has a half-life of 64.8 hours. A sample containing this isotope has...
The radioactive isotope 198Au has a half-life of 64.8 hours. A sample containing this isotope has an initial activity at (t=0) of 1.50e-12 Bq. Calculate the number of nuclei that will decay in the time interval between t1=10 hours and t2=20 hours Answer is 4.60e16 but I'm not sure how. Thanks and please show work
Suppose a patient is given 140 mg of I−131, a beta emitter with a half-life of...
Suppose a patient is given 140 mg of I−131, a beta emitter with a half-life of 8.0 days.Assuming that none of the I−131 is eliminated from the person's body in the first 4.0 hours of treatment, what is the exposure (in Ci) during those first four hours?(give correct solution)
The radioactive isotope Gold-198 has a half-life of 64.80 hrs. A sample containing this isotope has...
The radioactive isotope Gold-198 has a half-life of 64.80 hrs. A sample containing this isotope has an initial activity of 40.0 μCi. Calculate the number of nuclei that will decay in the time interval from 10 hrs to 12 hrs.[10 marks]
The radioactive isotope 198Au has a half-life of 64.8 hr. A sample containing this isotope has...
The radioactive isotope 198Au has a half-life of 64.8 hr. A sample containing this isotope has an initial activity (t = 0) of 1.5x 10^12 Bq. Calculate the number of nuclei that decay in the time interval between t1 = 10 hr and t2 = 12 hr. Please show and explain work, and do not use calculus to solve it.
The radioactive isotope 32P decays by first-order kinetics and has a half-life = 14.3 days. How...
The radioactive isotope 32P decays by first-order kinetics and has a half-life = 14.3 days. How many atoms of a 1.0000 ug sample of 32P would decay in 1.0000 second? (Assume 1 decay per atom.)
At 8:00 A.M., a patient receives a 1.1-μg dose of I-131 to treat thyroid cancer. Part...
At 8:00 A.M., a patient receives a 1.1-μg dose of I-131 to treat thyroid cancer. Part A: If the nuclide has a half-life of 8.0 days, what mass of the nuclide remains in the patient at 4:00 P.M. the next day? (Assume no excretion of the nuclide from the body.) Express your answer using two significant figures. m =   μg  
At 8:00 A.M., a patient receives a 1.1-μg dose of I-131 to treat thyroid cancer. Part...
At 8:00 A.M., a patient receives a 1.1-μg dose of I-131 to treat thyroid cancer. Part A If the nuclide has a half-life of 8.0 days, what mass of the nuclide remains in the patient at 4:00 P.M. the next day? (Assume no excretion of the nuclide from the body.) Express your answer using two significant figures. m =   μg  
given a radiotracer Technetium-99m with a half-life of 6 hours and a photon energy of 140...
given a radiotracer Technetium-99m with a half-life of 6 hours and a photon energy of 140 keV or an Iodine-131 with a half-life of 8.04 days and a photon energy of 364 keV, which one would be better to use on a patient if you wanted to take one 30-minute image a day to track a new cancer therapy over 6 days? Explain your answer.
1. Given that a freshly prepared radioactive isotope has a half-life of 10 days, the percentage...
1. Given that a freshly prepared radioactive isotope has a half-life of 10 days, the percentage of it remaining after 30 days is A 30.0 %. B 10.0 %. C 12.5 %. D 72.5 %. 2. During a second half-life, the original material has decayed A 25%. B 50%. C 75%. D 100%.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT