Question

1 mole of ideal gas at 270C is expanded isothermally from an initial pressure of 3...

1 mole of ideal gas at 270C is expanded isothermally from an initial pressure of 3 atm to afinal pressure of 1 atm in two ways: (a) reversibly and (b) against a constant external pressure of 1 atm. Calculate q, w, ΔU, ΔH and ΔS for each path.

Homework Answers

Answer #1

The temperature is constant in an isothermal process

a)

b) For an isothermal process either reversible or irreversible the internal energy change, delta U is equal to zero (U=0)

c) From the first law of thermodynamics, U=Q+W

Q = -W =

d)

e)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
One mole of ideal gas initially at 300 K is expanded from an initial pressure of...
One mole of ideal gas initially at 300 K is expanded from an initial pressure of 10 atm to a final pressure of 1 atm. Calculate ΔU, q, w, ΔH, and the final temperature T2 for this expansion carried out according to each of the following paths. The heat capacity of an ideal gas is cV=3R/2. 1. A reversible adiabatic expansion.
One mole of an ideal gas is expanded isothermally and irreversibly from an initial volume of...
One mole of an ideal gas is expanded isothermally and irreversibly from an initial volume of 10.0 L to a final volume of 20.0 L at a pressure equal to the final pressure and a temperature of 500 K. Calculate the value of w. Calculate the values of q. Calculate the value of ΔS (system). Calculate the values of delta S (surroundings). Calculate the values of ΔS (total).
One mole of an ideal gas expands reversibly and isothermally from 10. bar to 1.0 bar...
One mole of an ideal gas expands reversibly and isothermally from 10. bar to 1.0 bar at 298.15K. (i)Calculate the values of w, q, ∆U and ∆H? (ii)Calculate w if the gas were to have expanded to the same final state against a constant pressure of 1 bar.
One mole of an ideal gas is compressed at a constant temperature of 55 oC from...
One mole of an ideal gas is compressed at a constant temperature of 55 oC from 16.5 L to 12.8 L using a constant external pressure of 1.6 atm. Calculate w, q, ΔH and ΔS for this process. w = (?) kJ q = (?) kJ ΔH = (?) kJ ΔS = (?) J/(mol*K)
5 mole of an ideal gas for which Cv,m=3/2R, initially at 20 oC and 1 atm...
5 mole of an ideal gas for which Cv,m=3/2R, initially at 20 oC and 1 atm undergoes a two-stage transformation. For each of the stages described in the following list, Calculate the final pressure as well as q, w, ∆U, ∆H and ∆S. a) The gas is expanded isothermally and reversibly until the volume triple. b) then, the temperature is raised to T=2000 oC at the constant volume. Note: R= 8.314 j/mol.K or 0.082 lt.atm/mol.K, 1lt.atm= 101.325 joule
1.3 mole of an ideal gas at 300 K is expanded isothermally and reversibly from a...
1.3 mole of an ideal gas at 300 K is expanded isothermally and reversibly from a volume V to volume 4V. What is the change in entropy of the gas, in J/K?
Ten liters of a monoatomic ideal gas at 25o C and 10 atm pressure are expanded...
Ten liters of a monoatomic ideal gas at 25o C and 10 atm pressure are expanded to a final pressure of 1 atm. The molar heat capacity of the gas at constant volume, Cv, is 3/2R and is independent of temperature. Calculate the work done, the heat absorbed, and the change in U and H for the gas if the process is carried out (1) isothermally and reversibly, and (2) adiabatically and reversibly. Having determined the final state of the...
You have a balloon consisting of Helium, which is expanded isothermally at 25 ºC from 22.9...
You have a balloon consisting of Helium, which is expanded isothermally at 25 ºC from 22.9 dm3 to 32.7 dm3 (i) reversibly, (ii) against a constant external pressure equal to the final pressure of the gas, and (iii) freely against zero external pressure. Determine the work (w). Please refer to Table Q2(b) for the number of moles of Helium. number of mole of helium = 16
5 moles of a monatomic ideal gas initially at 1 atm and 200 K is compressed...
5 moles of a monatomic ideal gas initially at 1 atm and 200 K is compressed isothermally against a constant external pressure of 2.0 atm, to a final pressure of 2.0 atm. Calculate W; Q; U; and H in Joules.
1 mole methane gas (NOT ideal gas) isothermally expands from initial pressure of 5 bar to...
1 mole methane gas (NOT ideal gas) isothermally expands from initial pressure of 5 bar to 1bar at 50oC. Estimate the ENTROPY change (?S) for the gas using Lee/Kesler generalized correlation tables
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT