Question

At a given temperature, the elementary reaction A <--->B in the forward direction is first order...

At a given temperature, the elementary reaction A <--->B in the forward direction is first order in A with a rate constant of 2.50*10^-2 s^-1. The reverse reaction is first order in B and the rate constant is 7.30*10^-2 s^-1
What is the value of the equilibrium constant for the reaction A< --->B at this temperature?
What is the value of equilibrium constant for the reaction B<-->A at this temperature?

Homework Answers

Answer #1

A < --- > B.

Rate of forward reaction is first order with respect to A. Rate constant for forward reaction would be = 2.50 E-2 s-1.

The reverse reaction rate with respect to B is also first order.

Rate constant for reversible reaction is 7.30 E-2 s-1 .

Solution:

We have to find equilibrium constant For A to B ( forward reaction )

We know equilibrium constant for forward reaction is the ratio ration of rate constant or forward reaction to rate constant of backward reaction.

So equilibrium constant for forward reaction = (kf/kb) = 2.50 E -2 / 7.30 E-2 = 0.3425

Lets calculate equilibrium constant for backward reaction.

Keq (backward reaction) = 1 / K forward reaction = 1 / 0.3425 = 2.91

So the equilibrium constant for backward direction is 2.91

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
c.)At a given temperature, the elementary reaction A<=> B in the forward direction is the first...
c.)At a given temperature, the elementary reaction A<=> B in the forward direction is the first order in A with a rate constant of 3.40 × 10-2 s–1. The reverse reaction is first order in B and the rate constant is 5.80 × 10-2 s–1.What is the value of the equilibrium constant for the reaction A<=>B at this temperature. What is the value of the equilibrium constant for the reaction B<=> A at this temperature. d.) consider reaction mechanism: step...
a.)A certain reaction has an activation energy of 25.10 kJ/mol. At what Kelvin temperature will the...
a.)A certain reaction has an activation energy of 25.10 kJ/mol. At what Kelvin temperature will the reaction proceed 7.00 times faster than it did at 289 K? b.A certain reaction has an enthalpy of ΔH = 39 kJ and an activation energy of Ea = 51 kJ. What is the activation energy of the reverse reaction? c.)At a given temperature, the elementary reaction A<=> B in the forward direction is the first order in A with a rate constant of...
The elementary reaction 2H2O(g) (forward, reverse arrows) 2H2(g) + O2 proceeds at a certain temperature until...
The elementary reaction 2H2O(g) (forward, reverse arrows) 2H2(g) + O2 proceeds at a certain temperature until the partial pressure of H2O, H2 and O2 reach 0.0450atm, 0.00300atm and 0.00650atm respectively, What is the value of the equilibrium constant at this temperature. I need help please!
For a general chemical equation A+B⇌C+D the equilibrium constant can be expressed as a ratio of...
For a general chemical equation A+B⇌C+D the equilibrium constant can be expressed as a ratio of the concentrations: Kc=[C][D]/[A][B] If this is an elementary chemical reaction, then there is a single forward rate and a single reverse rate for this reaction, which can be written as follows: forward rate=kf[A][B] reverse rate=kr[C][D] where kf and kr are the forward and reverse rate constants, respectively. When equilibrium is reached, the forward and reverse rates are equal: kf[A][B]=kr[C][D] Thus, the rate constants are...
In a reversible reaction, when the rate of the forward reaction equals the rate of the...
In a reversible reaction, when the rate of the forward reaction equals the rate of the reverse reaction, the reaction is at ________. If Kc is the equilibrium constant for a forward reaction what is Kc' for the reverse reaction? Kc -Kc (Kc)-1 none of these Write the equilibrium constant expression for the following reaction in the forward direction: 2 CH4 (g) + 3 O2 (g) ⇋ 2 CO (g) + 4 H2O (g) Write the equilibrium constant expression for...
Both the forward and reverse reactions in the following equilibrium are believed to be elementary steps:...
Both the forward and reverse reactions in the following equilibrium are believed to be elementary steps: CO (g) + Cl2 (g) <----> COCl (g) + Cl (g) At 25C, the rate constants for the forward and reverse reactions are 2.1x10-29 M-1s-1 and 8.8x109 M-1s-1, respectively. a) What is the value for the equilibrium constant at 25C? b) Are the reactants or products favored at equilibrium?
If a first order reaction has a rate constant of 4.15 X 10-2 s-1 at a...
If a first order reaction has a rate constant of 4.15 X 10-2 s-1 at a temperature of 24.5oC, what would the value of k be if the reaction temperature was changed to 52oC given that the activation energy is 67.8 kJ/mol?
Chemical Equilibrium and Chemical Kinetics Part A For a certain reaction, Kc = 8.85×1010 and kf=...
Chemical Equilibrium and Chemical Kinetics Part A For a certain reaction, Kc = 8.85×1010 and kf= 7.52×10−2 M−2⋅s−1 . Calculate the value of the reverse rate constant, kr, given that the reverse reaction is of the same molecularity as the forward reaction. Express your answer with the appropriate units. Include explicit multiplication within units, for example to enter M−2⋅s−1 include ⋅ (multiplication dot) between each measurement. Part B For a different reaction, Kc = 1.70×1010, kf=6.63×105s−1, and kr= 3.91×10−5 s−1...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they resemble the equation for a straight line,y=mx+b. 1.) The reactant concentration in a zero-order reaction was 6.00×10−2M after 165 s and 3.50×10−2Mafter 385 s . What is the rate constant for this reaction? 2.)What was the initial reactant concentration for the reaction described in Part A? 3.)The reactant concentration in a first-order reaction was 6.70×10−2 M after 40.0 s and 2.50×10−3Mafter 95.0 s ....
Consider the first-order reaction described by the equation cyclopropane---propene At a certain temperature, the rate constant...
Consider the first-order reaction described by the equation cyclopropane---propene At a certain temperature, the rate constant for this reaction is 5.42× 10–4 s–1. Calculate the half-life of cyclopropane at this temperature. Given an initial cyclopropane concentration of 0.00510 M, calculate the concentration of cyclopropane that remains after 1.70 hours.