Question

A certain first order reaction has a half-life of 1.35 days. What was the original concentration...

A certain first order reaction has a half-life of 1.35 days. What was the original concentration of the reactant if its concentration after 5 days was found to be 0.0334 M? please show all work

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
For a first-order reaction, the half-life is constant. It depends only on the rate constant k...
For a first-order reaction, the half-life is constant. It depends only on the rate constant k and not on the reactant concentration. It is expressed as t1/2=0.693k For a second-order reaction, the half-life depends on the rate constant and the concentration of the reactant and so is expressed as t1/2=1k[A]0 Part A A certain first-order reaction (A→products) has a rate constant of 4.20×10−3 s−1 at 45 ∘C. How many minutes does it take for the concentration of the reactant, [A],...
For a first-order reaction, the half-life is constant. It depends only on the rate constant k...
For a first-order reaction, the half-life is constant. It depends only on the rate constant k and not on the reactant concentration. It is expressed as t1/2=0.693k For a second-order reaction, the half-life depends on the rate constant and the concentration of the reactant and so is expressed as t1/2=1k[A]0 Part A A certain first-order reaction (A→products ) has a rate constant of 5.10×10−3 s−1 at 45 ∘C . How many minutes does it take for the concentration of the...
Part A A certain first-order reaction (A→products) has a rate constant of 7.20×10−3 s−1 at 45...
Part A A certain first-order reaction (A→products) has a rate constant of 7.20×10−3 s−1 at 45 ∘C. How many minutes does it take for the concentration of the reactant, [A], to drop to 6.25% of the original concentration? Express your answer with the appropriate units. Answer: 6.42 min Part B A certain second-order reaction (B→products) has a rate constant of 1.35×10−3M−1⋅s−1 at 27 ∘Cand an initial half-life of 236 s . What is the concentration of the reactant B after...
a. what order of reaction has a half life that is independent of initial concentration? b....
a. what order of reaction has a half life that is independent of initial concentration? b. what order of reaction has a plot of the inverse of the concentration vs. time yielding a straight line? c. the order of reaction with a half-life of the reaction that gets shorter as the initial concentration is increased? d. the order of reaction with a plot of the natural log of the concentration of the reactant vs. time yielding a straight line? e....
Part A : A certain first-order reaction (A→products) has a rate constant of 9.30×10−3 s−1 at...
Part A : A certain first-order reaction (A→products) has a rate constant of 9.30×10−3 s−1 at 45 ∘C. How many minutes does it take for the concentration of the reactant, [A], to drop to 6.25% of the original concentration? Part B : A certain second-order reaction (B→products) has a rate constant of 1.10×10−3M−1⋅s−1 at 27 ∘C and an initial half-life of 278 s . What is the concentration of the reactant B after one half-life?
for certain 1st order reaction what happens to the half life if the concentration is doubled?
for certain 1st order reaction what happens to the half life if the concentration is doubled?
The integrated rate law allows chemists to predict the reactant concentration after a certain amount of...
The integrated rate law allows chemists to predict the reactant concentration after a certain amount of time, or the time it would take for a certain concentration to be reached. The integrated rate law for a first-order reaction is: [A]=[A]0e−kt Now say we are particularly interested in the time it would take for the concentration to become one-half of its initial value. Then we could substitute [A]02 for [A] and rearrange the equation to: t1/2=0.693k This equation calculates the time...
Half-life equation for first-order reactions: t1/2=0.693k   where t1/2 is the half-life in seconds (s), and kis...
Half-life equation for first-order reactions: t1/2=0.693k   where t1/2 is the half-life in seconds (s), and kis the rate constant in inverse seconds (s−1). a) What is the half-life of a first-order reaction with a rate constant of 8.10×10−4  s^−1? Express your answer with the appropriate units. b) What is the rate constant of a first-order reaction that takes 151 seconds for the reactant concentration to drop to half of its initial value? Express your answer with the appropriate units. c) A...
What is the half-life of a first-order reaction with a rate constant of 4.20×10−4  s−1? (the answer...
What is the half-life of a first-order reaction with a rate constant of 4.20×10−4  s−1? (the answer is 1650s) What is the rate constant of a first-order reaction that takes 458 seconds for the reactant concentration to drop to half of its initial value?
PLEASE MAKE SURE YOUR ANSWERS ARE CORRECT Part A What is the half-life of a first-order...
PLEASE MAKE SURE YOUR ANSWERS ARE CORRECT Part A What is the half-life of a first-order reaction with a rate constant of 7.60×10−4  s−1? Express your answer with the appropriate units. Part B A certain first-order reaction has a rate constant of 1.50×10−3 s−1. How long will it take for the reactant concentration to drop to 18 of its initial value? Express your answer with the appropriate units.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT