Question

A 2.50 mol sample of benzene (C6H6, 78.11 g/mol) was burned in a bomb calorimeter with...

A 2.50 mol sample of benzene (C6H6, 78.11 g/mol) was burned in a bomb calorimeter with a heat capacity of 800 J/°C. The calorimeter contained 100g of water (4.18J/g°C) and the temperature increased by 4°C. What is the molar enthalpy of combustion for this compound?

Homework Answers

Answer #1

heat absorbed by calorimeter = heat capacity * temperature change

                                           = 800*4 = 32000joules

heat absorbed by water = mcT

                                  = 100*4.18*4 = 1672 joules

total heat = 32000+1672 = 33672 joules = 33.672 kj

total heat divide by 2.5 moles of benzen = 33.672/2.5 = 13.4688kj/mole

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 1.000g sample of benzene (C6H6) is burned in a bomb calorimeter whose total heat capacity...
A 1.000g sample of benzene (C6H6) is burned in a bomb calorimeter whose total heat capacity is 4.957 kJ/ oC. If the temperature of the calorimeter increases from 25.30 to 33.74 oC , what is the heat of combustion of the benzene per mole. Explanation please.
When 86.6 g of a compound was burned in a bomb calorimeter that contained 0.184 kg...
When 86.6 g of a compound was burned in a bomb calorimeter that contained 0.184 kg of water the temperature rise of the water in the calorimeter was 57.0C. If the heat of combustion of the compound is 1,396 kJ/mol, what is the molar mass of the compound? Specific heat of water is 4.184 J/gC. Answer to 0 decimal places and enter the units.
When 1.020 g of ethanol (C2H6O, 46.07 g/mol) was burned in a bomb calorimeter containing 2400....
When 1.020 g of ethanol (C2H6O, 46.07 g/mol) was burned in a bomb calorimeter containing 2400. g of water, the temperature of the water rose from 22.46 to 25.52ºC.   The specific heat of water is 4.18 J/g-°C. What is the enthalpy of combustion of 1 mol of ethanol? What is the heat capacity of the calorimeter?
1 g of C6H6(l) (benzene) is burned in an adiabatic bomb calorimeter (constant volume). T before...
1 g of C6H6(l) (benzene) is burned in an adiabatic bomb calorimeter (constant volume). T before ignition was 20.826 °C and 25.000 °C after combustion (remember that the energy change of the bomb is opposite the energy change of the combustion). The heat capacity of the calorimeter was 10.000 kJ K-1. Calculate fHm for benzene at 298.15 K from this data (make sure to convert your enthalpies to molar values). Use the tables in the back of the book (resource...
A 5.00g sample of TNT (C7H5N2O6) is burned in a bomb calorimeter with a heat capacity...
A 5.00g sample of TNT (C7H5N2O6) is burned in a bomb calorimeter with a heat capacity of 420 J/ºC. The calorimeter contained 610 grams of water (4.18J/gºC) and the temperature of the water was measured to go from 20.0 ºC to 22.5 ºC. What is the heat of combustion of TNT? (1) -79.10 kJ/mol (2) -158.2 kJ/mol (3) -258.2 kJ/mol (4) -316.5 kJ/mol (5) -632.9 kJ/mol
A 0.553-g sample of diphenyl phthalate (C20H14O4) is burned in a bomb calorimeter and the temperature...
A 0.553-g sample of diphenyl phthalate (C20H14O4) is burned in a bomb calorimeter and the temperature increases from 24.40 °C to 27.57 °C. The calorimeter contains 1.08×103 g of water and the bomb has a heat capacity of 877 J/°C. The heat capacity of water is 4.184 J g-1°C-1. Based on this experiment, calculate ΔE for the combustion reaction per mole of diphenyl phthalate burned. ______ kJ/mol
A 0.373-g sample of naphthalene (C10H8) is burned in a bomb calorimeter and the temperature increases...
A 0.373-g sample of naphthalene (C10H8) is burned in a bomb calorimeter and the temperature increases from 24.90 °C to 27.80 °C. The calorimeter contains 1.05E3 g of water and the bomb has a heat capacity of 836 J/°C. Based on this experiment, calculate ΔE for the combustion reaction per mole of naphthalene burned (kJ/mol).
A 0.287-g sample of bianthracene (C28H18) is burned in a bomb calorimeter and the temperature increases...
A 0.287-g sample of bianthracene (C28H18) is burned in a bomb calorimeter and the temperature increases from 25.30 °C to 27.50 °C. The calorimeter contains 1.03E3 g of water and the bomb has a heat capacity of 856 J/°C. Based on this experiment, calculate ΔE for the combustion reaction per mole of bianthracene burned (kJ/mol).
A 1.000 g sample of octane (C8H18) is burned in a bomb calorimeter containing 1200 grams...
A 1.000 g sample of octane (C8H18) is burned in a bomb calorimeter containing 1200 grams of water at an initial temperature of 25.00ºC. After the reaction, the final temperature of the water is 33.20ºC. The heat capacity of the calorimeter (also known as the “calorimeter constant”) is 837 J/ºC. The specific heat of water is 4.184 J/g ºC. Calculate the heat of combustion of octane in kJ/mol.
. A 0.500 g sample of naphthalene (C10H8) is burned in a bomb calorimeter containing 650...
. A 0.500 g sample of naphthalene (C10H8) is burned in a bomb calorimeter containing 650 grams of water at an initial temperature of 20.00 oC. After the reaction, the final temperature of the water is 26.4ºC. The heat capacity of the calorimeter is 420 J/oC. Using these data, calculate the heat of combustion of naphthalene in kJ/mol.