Question

The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts...

The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts with nitrogen gas to produce ammonia according to the equation

3H2(g)+N2(g)→2NH3(g)

The ammonia produced in the Haber-Bosch process has a wide range of uses, from fertilizer to pharmaceuticals. However, the production of ammonia is difficult, resulting in lower yields than those predicted from the chemical equation.

1.60 g H2 is allowed to react with 10.3 g N2, producing 2.24 g NH3.

Part A) What is the theoretical yield in grams for this reaction under the given conditions?

Part B) What is the percent yield for this reaction under the given conditions?

Homework Answers

Answer #1

percentage yield

H2 = 2g/mol
1.60g/2g/mol = 0.8 mol H2
N2 = 28 g/mol
10.3g / 28 g/mol = 0.367mol N2

0.367mol N2 required 1.101 mol of H2
=> H2 is the limiting reagent as to react all of the N2 you would require 1.101 mol of H2



NH3 =17g/mol

for every 0.8 mol H2 you only require 0.266 of N2 react so the limiting reagent is Hydrogen

0.367*3 = 1.101 H2 needed for 0.367 moles of N2

2/3(0.8) *17 = 9.06
possible weight of NH3 =

0.8moles H2 x (2 moles NH3 / 3 mole H2) x (17.03 g NH3 / 1 mole NH3)
=9.06 grams
yield =(actual ammonia produced /theoritical mass )*100 = (2.24/9.06)*100/1=24.72 %

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts...
The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts with nitrogen gas to produce ammonia according to the equation 3H2(g)+N2(g)→2NH3(g) 1.16 g H2 is allowed to react with 10.2 g N2, producing 2.55 g NH3. The ammonia produced in the Haber-Bosch process has a wide range of uses, from fertilizer to pharmaceuticals. However, the production of ammonia is difficult, resulting in lower yields than those predicted from the chemical equation. Part A: What...
The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts...
The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts with nitrogen gas to produce ammonia according to the equation 3H2(g)+N2(g)→2NH3(g) The ammonia produced in the Haber-Bosch process has a wide range of uses, from fertilizer to pharmaceuticals. However, the production of ammonia is difficult, resulting in lower yields than those predicted from the chemical equation. 1.71 g H2 is allowed to react with 10.1 g N2, producing 1.36 g NH3. Part A What...
The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts...
The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts with nitrogen gas to produce ammonia according to the equation: 3 H2 (g) + N2 (g) → 2 NH3 (g) The ammonia produced in the Haber-Bosch process has a wide range of uses, from fertilizer to pharmaceuticals. However, the production of ammonia is difficult, resulting in lower yields than those predicted from the chemical equation. What is the maximum theoretical yield in grams if...
1) 2C8H18(g)+25O2(g)→16CO2(g)+18H2O(g) A)After the reaction, how much octane is left? 2)The Haber-Bosch process is a very...
1) 2C8H18(g)+25O2(g)→16CO2(g)+18H2O(g) A)After the reaction, how much octane is left? 2)The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts with nitrogen gas to produce ammonia according to the equation 3H2(g)+N2(g)→2NH3(g)   The ammonia produced in the Haber-Bosch process has a wide range of uses, from fertilizer to pharmaceuticals. However, the production of ammonia is difficult, resulting in lower yields than those predicted from the chemical equation. 1.71 g H2 is allowed to react with...
Hydrogen gas, H2, reacts with nitrogen gas, N2, to form ammonia gas, NH3, according to the...
Hydrogen gas, H2, reacts with nitrogen gas, N2, to form ammonia gas, NH3, according to the equation 3H2(g)+N2(g)→2NH3(g) 1. How many molecules (not moles) of NH3 are produced from 5.25×10−4 g of H2 ?
hydrogen gas, H2, reacts with nitrogen gas,N2, to form ammonia gas , NH3 according to the...
hydrogen gas, H2, reacts with nitrogen gas,N2, to form ammonia gas , NH3 according to the equation... 3H2+N2 --->2NH3 1.how many grams of NH3 can be produced from 3.42 mol of N2 and excess H2 2. how many grams of H2 are needed to produce 14.93 g of NH3 ? 3. How many molecules (not moles) of NH3 are produced from 6.04*10^-4 g of H2 ?
In the Haber process, ammonia is synthesized from nitrogen and hydrogen: N2(g) + 3H2(g) → 2NH3(g)...
In the Haber process, ammonia is synthesized from nitrogen and hydrogen: N2(g) + 3H2(g) → 2NH3(g) ΔG° at 298 K for this reaction is -33.3 kJ/mol. The value of ΔG at 298 K for a reaction mixture that consists of 1.7 atm N2, 3.2 atm H2, and 0.85 atm NH3 is a) -139.6 b) 0.43 c) -4.63 × 103 d) -44.1 e) -1.08 × 104
Ammonia is produced directly from nitrogen and hydrogen by using the Haber process. The chemical reaction...
Ammonia is produced directly from nitrogen and hydrogen by using the Haber process. The chemical reaction is N2(g)+3H2(g) ---> 2NH3 (g) (a) Use bond enthalpies to estimate the enthalpy change for the reaction, and tell whether this reaction is exothermic or endothermic (b) Compare the enthalpy change you calculate in (a) to the true enthalpy change as obtained using ∆Hf° values. (∆Hf° of ammonia is -46.19 kJ/mol)
1) One of the steps in the commercial process for converting ammonia to nitric acid is...
1) One of the steps in the commercial process for converting ammonia to nitric acid is the conversion of NH3 to NO: 4NH3(g)+5O2(g)→4NO(g)+6H2O(g) How many grams of NO and of H2O form? Enter your answers numerically separated by a comma. In a certain experiment, 2.10 g of NH3 reacts with 3.85 g of O2. 2) 2C8H18(g)+25O2(g)→16CO2(g)+18H2O(g) How many moles of water are produced in this reaction? After the reaction, how much octane is left? 3) 3H2(g)+N2(g)→2NH3(g) 1.71 g H2 is...
Ammonia (NH3) is produced in the Haber process by passing nitrogen (N2) with hydrogen over an...
Ammonia (NH3) is produced in the Haber process by passing nitrogen (N2) with hydrogen over an iron catalyst at high temperature and pressure. N2(g) + 3 H2(g) --> 2 NH3(g) How many grams of ammonia can be prepared by reaction of 9.405 g of nitrogen with 2.413 g of hydrogen?