Question

CO(g) + H2O --> CO2 (g) + H2(g) kC = 4.06 at 500 C degree. 2.8g...

CO(g) + H2O --> CO2 (g) + H2(g)

kC = 4.06 at 500 C degree.

2.8g CO , 1.8g H2O placed in a 1.00 litter

a/ calculate Kp

b/ What are the concentrations of reactants and products at equilibrium

Homework Answers

Answer #1

Kc = 4.06 = [CO2][H2]/[CO][H2O]

Initial concentrations of CO and H2O are 0.100 M each

Assume that x mol/L of CO2 and H2 are formed. Equilibrium concentrations will be:
[CO] = [H2O] = 0.1 - x
[CO2] = [H2] = x.

So, Kc = 4.06 = x^2 / (0.1-x)^2

Since the right side of the equation is a perfect square, the easiest way to begin solving is to take the square root of both sides. That gives
2.015 = x/.1-x

x=0.067You defined x to be the equilibrium concentrations of CO2 and H2. The equilibrium concentrations of CO and H2O are 0.100 -0.067=0.033.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
For the reaction H2 (g) + CO2 (g) ⇌ H2O(g) + CO(g), Kc = 1.60. Exactly...
For the reaction H2 (g) + CO2 (g) ⇌ H2O(g) + CO(g), Kc = 1.60. Exactly 1.00 mole of each gas is added simultaneously to a 10.0 L flask. Calculate all equilibrium concentrations.
At a certain temperature the reaction CO(g) + H2O(g) CO2(g) + H2(g) has Kc = 0.400....
At a certain temperature the reaction CO(g) + H2O(g) CO2(g) + H2(g) has Kc = 0.400. Exactly 1.00 mol of each gas was placed in a 100.0 L vessel and the mixture underwent reaction. What was the equilibrium concentration of each gas? [CO] = M [H2O] = M [H2] = M [CO2] =
The Equilibrium constant Kc for the reaction H2(g) + CO2(g) -> H2O(g) + CO(g) is 4.2...
The Equilibrium constant Kc for the reaction H2(g) + CO2(g) -> H2O(g) + CO(g) is 4.2 at 1650 deg C. Initially .74 mol H2 and .74 mol CO2 are injected into a 4.6-L flask. Calculate the concentration of each species at equilibrium. H2= CO2 = H2O= CO=
Consider the following reaction: CO(g)+H2O(g)⇌CO2(g)+H2(g) Kc=102 at 500 K A reaction mixture initially contains 0.120 M...
Consider the following reaction: CO(g)+H2O(g)⇌CO2(g)+H2(g) Kc=102 at 500 K A reaction mixture initially contains 0.120 M COand 0.120 M H2O. A)What will be the equilibrium concentration of [CO]? B)What will be the equilibrium concentration of [H2O]? C)What will be the equilibrium concentration of [CO2]? D)What will be the equilibrium concentration of [H2]?
At a certain temperature the reaction CO(g) + H2O(g) CO2(g) + H2(g) has Kc = 0.400....
At a certain temperature the reaction CO(g) + H2O(g) CO2(g) + H2(g) has Kc = 0.400. Exactly 1.00 mol of each gas was placed in a 100.0 L vessel and the mixture underwent reaction. What was the equilibrium concentration of each gas?
Consider the following reaction. CO (g) +H2O (g) = CO2 (g) + H2 (g) If the...
Consider the following reaction. CO (g) +H2O (g) = CO2 (g) + H2 (g) If the reaction begins in a 10.00 L vessel with 2.5 mol CO and 2.5 mol H2O gas at 588K (Kc= 31.4 at 588 K). Calculate the concentration of CO, H2O, CO2, and H2 at equilibrium.
Consider the reaction CO(g)+H2O(g)⇌CO2(g)+H2(g) Kc=102 at 500 K A reaction mixture initially contains 0.150 MCO and...
Consider the reaction CO(g)+H2O(g)⇌CO2(g)+H2(g) Kc=102 at 500 K A reaction mixture initially contains 0.150 MCO and 0.150 MH2O. Part A What will be the equilibrium concentration of CO? Express the concentration in molarity to two significant figures.
Consider the following equilibrium: CO2(g) + H2(g) CO(g) + H2O(g); Kc = 1.6 at 1260 K...
Consider the following equilibrium: CO2(g) + H2(g) CO(g) + H2O(g); Kc = 1.6 at 1260 K Suppose 0.038 mol CO2 and 0.022 mol H2 are placed in a 1.50-L vessel at 1260 K. What is the equilibrium partial pressure of CO(g)? (R = 0.0821 L · atm/(K · mol)). The answer is either 9.9 atm or 1.1 atm when I solve using the quadratic equation but I can't decide which answer is correct.
The equilibrium constant Kc for the reaction H2(g) + Br2(g) ⇆ 2HBr(g) is 2.180×106 at 730°...
The equilibrium constant Kc for the reaction H2(g) + Br2(g) ⇆ 2HBr(g) is 2.180×106 at 730° C. Starting with 4.20 moles of HBr in a 17.8−L reaction vessel, calculate the concentrations of H2,Br2, and HBr at equilibrium. 17. The equilibrium constant Kc for the reaction below is 0.00771 at a certain temperature. Br2(g) ⇌ 2Br(g) If the initial concentrations are [Br2] = 0.0433 M and [Br] = 0.0462 M, calculate the concentrations of these species at equilibrium. For the reaction...
A mixture of 0.2000 mol of CO2, 0.1000 mol of H2, and 0.1600 mol of H2O...
A mixture of 0.2000 mol of CO2, 0.1000 mol of H2, and 0.1600 mol of H2O is placed in a 2.000-L vessel. The following equilibrium is established at 500 K: CO2(g)+H2(g)⇌CO(g)+H2O(g) Calculate Kc for the reaction.