Question

Astronomers have detected hydrogen atoms in interstellar space in the n=746 excited state. Suppose an atom in this excited state undergoes a transition from n=746 to n=731. What is the atoms change in energy as the result of this transition? What is the wavelength of radiation corresponding to this transition? What kind of telescope would astronomers need in order to detect radiation of this wavelength?

Answer #1

Apply Rydberg Formula

E = R*(1/nf^2 – 1/ni ^2)

R = -2.178*10^-18 J

Nf = final stage/level

Ni = initial stage/level

E = Energy per unit (i.e. J/photon)

E = (-2.178*10^-18)*(1/731^2 – 1/746 ^2)

E = 1.6226*10^-25 J/atom

For the wavelength:

WL = h c / E

h = Planck Constant = 6.626*10^-34 J s

c = speed of particle (i.e. light) = 3*10^8 m/s

E = energy per particle J/photon

WL = (6.626*10^-34)(3*10^8)/(1.6226*10^-25)

WL = 1.2250 m

c)

A radio telescope will do, it will be able to review "meters" or 10^0 meter of wavleenght

Astronomers have detected hydrogen atoms in interstellar space
in the n =744 excited state. Suppose an atom in this excited state
undergoes a transition from n =744 to n = 731.
What is the atom's change in energy as a result of this
transition?
What is the wavelength of radiation corresponding to this
transition?
What kind of telescope would astronomers need in order to detect
radiation of this wavelength?

A hydrogen atom at rest is initially in an excited state
corresponding to n = 5.
a- Give the quantum numbers (l) and (m) which correspond to n =
5
b- What is the ionization energy of the atom in this state?
c- What is the frequency of the photon emitted when it returns
to its ground state n = 1?
d- Estimate the momentum and the kinetic energy of the atom's
recoil during the photon emission.
mH= 1.007825? 1?...

A hydrogen atom (Z=1) is in the third excited state. It makes a
transition to a different state, and a photon is either emitted or
absorbed. Answer the following conceptual questions:
What is the quantum number of the third excited state?
When an atom emits a photon, is the final quantum number of the
atom greater than or less than the initial quantum number?
When an atom absorbs a photon, is the final quantum number of
the atom greater than...

A hydrogen atom is initially at n=2 excited state and then
absorbs energy 2.86 eV. The excited state is unstable, and it tends
to finally return to its ground state. 8%
(a) How many possible wavelengths will be emitted as the atom
returns to its ground state? (also draw a diagram of energy levels
to illustrate your answer)
Calculate the second shortest wavelength emitted.

A hydrogen atom is initially at n=2 excited state and then
absorbs energy 2.55 eV. The excited state is unstable, and it tends
to finally return to its ground state.
(a) How many possible wavelengths will be emitted as the atom
returns to its ground state? draw a diagram of energy levels to
illustrate answer
Answer: (number) ________
(b) Calculate the shortest wavelength emitted.
Answer: ________

The electron in a hydrogen atom is excited to the n = 6 shell
and emits electromagnetic radiation when returning to lower energy
levels. Determine the number of spectral lines that could appear
when this electron returns to the lower energy levels, as well as
the wavelength range in nanometers.

1. a. A photon is absorbed by a hydrogen atom causing an
electron to become excited (nf = 6) from the ground state electron
configuration. What is the energy change of the electron associated
with this transition?
b. After some time in the excited state, the electron falls from
the n = 6 state back to its ground state. What is the change in
energy of the electron associated with this transition?
c. When the electron returns from its excited...

A hydrogen atom is in its first excited state
(n = 2).
Using Bohr's atomic model, calculate the following.
(a)
the radius of the electron's orbit (in nm)
nm
(b)
the potential energy (in eV) of the electron
eV
(c)
the total energy (in eV) of the electron
eV

I have solved some of the questions and the answers are the
following
1. 1.62 * 10^-4 eV
2. 0.00765432 m
4. 5.909 * 10^-3 m
5. 3.33 * 10^-10 m
So the only questions missing are question #3 and question #6.
If when solving questions 1, 2, 4 and 5, you do not get the same
values as posted here, please do not even bother to submit question
3 and question 6 because you most likely have it wrong...

1.) Which transition in a hydrogen atom would
emit the photon of greatest frequency?
n = 35 to n = 2
n= 6 to n = 2
n = 12 to n = 6
n = 1 to n = 4
n = 2 to n = 9
n = 3 to n = 1
***NOT n=35 to n=2***
2.) Which transition in a hydrogen atom would
absorb the photon of greatest frequency?
n = 3 to n = 1...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 1 minute ago

asked 1 minute ago

asked 1 minute ago

asked 2 minutes ago

asked 2 minutes ago

asked 3 minutes ago

asked 4 minutes ago

asked 6 minutes ago

asked 6 minutes ago

asked 6 minutes ago

asked 6 minutes ago

asked 7 minutes ago