A certain element crystallizes in a face-centered cubic lattice. The density of the crystal is 22.67 g·cm–3, and the edge of the unit cell is 383.3 pm. Calculate the atomic mass of the element. (a) 192 g·mol–1 (b) 40 g·mol–1 (c) 183 g·mol–1 (d) 70 g·mol–1 (e) None of the above
Density = 22.67 g cm-3
edge of unit call = 383.3 pm
volume of unit cell = a3 = 56314010.5 pm3 = 56314010.5 * 10-30 cm3 = 5.631 * 10-23 cm3
=> Mass of a unit cell = density * volume of unit cell = 22.67 * 5.631 * 10-23 g = 127.65 * 10-23 g
In face centered cubie, 4 atoms are pesent.
Thus, mass of an atom = (127.65 * 10-23)/4 = 31.91 * 10-23 g/atom
Atomic mass = mass of one atom * Avagadro's number = 31.91 * 10-23 g/atom * 6.023 * 1023 atoms/mol = 192.21 g/mol
The atomic mass of the element: (a) 192 g·mol–1
Get Answers For Free
Most questions answered within 1 hours.