Question

Given the following reactions and their enthalpies: ΔH(kJ/mol)−−−−−−−−−−− H2(g)⟶2H(g) +436 O2(g)⟶2O(g) +495 H2+12O2(g)⟶H2O(g) −242 Part A...

Given the following reactions and their enthalpies: ΔH(kJ/mol)−−−−−−−−−−− H2(g)⟶2H(g) +436 O2(g)⟶2O(g) +495 H2+12O2(g)⟶H2O(g) −242 Part A Devise a way to calculate ΔH for the reaction H2O(g)⟶2H(g)+O(g)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Given the following reactions and their enthalpies: ΔH(kJ/mol)−−−−−−−−−−− H2(g)⟶2H(g)   +436 O2(g)⟶2O(g)   +495 H2+1/2O2(g)⟶H2O(g)   −242 A. Devise...
Given the following reactions and their enthalpies: ΔH(kJ/mol)−−−−−−−−−−− H2(g)⟶2H(g)   +436 O2(g)⟶2O(g)   +495 H2+1/2O2(g)⟶H2O(g)   −242 A. Devise a way to calculate ΔH for the reaction H2O(g)⟶2H(g)+O(g) B. estimate the H-O bond energy
Calculate the enthalpy of the reaction 2NO(g)+O2(g)→2NO2(g) given the following reactions and enthalpies of formation: 12N2(g)+O2(g)→NO2(g),   ΔH∘A=33.2...
Calculate the enthalpy of the reaction 2NO(g)+O2(g)→2NO2(g) given the following reactions and enthalpies of formation: 12N2(g)+O2(g)→NO2(g),   ΔH∘A=33.2 kJ 12N2(g)+12O2(g)→NO(g),  ΔH∘B=90.2 kJ
Given the following data: H2(g) + 1/2O2(g) → H2O(l) ΔH° = -286.0 kJ C(s) + O2(g)...
Given the following data: H2(g) + 1/2O2(g) → H2O(l) ΔH° = -286.0 kJ C(s) + O2(g) → CO2(g) ΔH° = -394.0 kJ 2CO2(g) + H2O(l) → C2H2(g) + 5/2O2(g) ΔH° = 1300.0 kJ Calculate ΔH° for the reaction: 2C(s) + H2(g) → C2H2(g)
Given the following information: 2 H2 (g) + O2 (g) → 2 H2O (g) ΔH =...
Given the following information: 2 H2 (g) + O2 (g) → 2 H2O (g) ΔH = −438.6 kJ 3 O2 (g) → 2 O3 (g) ΔH = +284.6 kJ Which is a true statement about the reaction below? 3 H2 (g) + O3 (g) → 3 H2O (g) A) The reaction is exothermic. B) The reaction will not proceed as written. C) Multiplying both sides of the reaction by a factor of 2 will have no effect on the value...
Use Hess's law to determine ΔH∘ for the reaction CO(g)+12O2(g)→CO2(g), given that C(graphite)+12O2(g)→CO(g), ΔH∘=−110.54kJ/mol C(graphite)+O2(g)→CO2(g), ΔH∘=−393.51kJ/mol
Use Hess's law to determine ΔH∘ for the reaction CO(g)+12O2(g)→CO2(g), given that C(graphite)+12O2(g)→CO(g), ΔH∘=−110.54kJ/mol C(graphite)+O2(g)→CO2(g), ΔH∘=−393.51kJ/mol
1.Using the enthalpies of formation given below, calculate ΔH°rxn in kJ, for the following reaction. Report...
1.Using the enthalpies of formation given below, calculate ΔH°rxn in kJ, for the following reaction. Report your answer to two decimal places in standard notation. H2S(g) + 2O2(g) → SO3(g) + H2O(l) H2S (g): -20.60 kJ/mol O2 (g): 0.00 kJ/mol SO3 (g): -395.77 kJ/mol H2O (l): -285.83 kJ/mol 2. Calculate the amount of heat absorbed/released (in kJ) when 22.54 grams of SO3 are produced via the above reaction. Report your answer to two decimal places, and use appropriate signs to...
Given the following thermochemical data: ½H2(g)+AgNO3(aq) → Ag(s)+HNO3(aq) ΔH = -105.0 kJ 2AgNO3(aq)+H2O(l) → 2HNO3(aq)+Ag2O(s) ΔH...
Given the following thermochemical data: ½H2(g)+AgNO3(aq) → Ag(s)+HNO3(aq) ΔH = -105.0 kJ 2AgNO3(aq)+H2O(l) → 2HNO3(aq)+Ag2O(s) ΔH = 44.8 kJ H2O(l) → H2(g)+½O2(g) ΔH = 285.8 kJ Use Hess’s Law to determine ΔH for the reaction: Ag2O(s) → 2Ag(s)+½O2(g)
Use standard enthalpies of formation to calculate ΔH∘rxn for the following reaction: SO2(g)+12O2(g)→SO3(g) ΔH∘rxn =
Use standard enthalpies of formation to calculate ΔH∘rxn for the following reaction: SO2(g)+12O2(g)→SO3(g) ΔH∘rxn =
Given the following reactions and their associated enthalpy changes    CO2 (g) →      C (s) +...
Given the following reactions and their associated enthalpy changes    CO2 (g) →      C (s) + O2 (g)                          ΔH = 393.5 kJ C3H8 (g) + 5 O2 (g) →     3 CO2 (g) + 4 H2O (g)   ΔH = -2044 kJ     H2 (g) + 1/2 O2 (g) →        H2O (g)                     ΔH = -241.8 kJ calculate the enthalpy change for the following reaction: 4 H2 (g) + 3 C (s)→ C3H8 (g)
Burning H2 (g) in the presence of O2 (g) proceeds by the following reaction:                         H2...
Burning H2 (g) in the presence of O2 (g) proceeds by the following reaction:                         H2 (g) + ½ O2 (g) --> H2O (g)                       eq. 1 In a fuel cell, the oxidation half-reaction occurring at the anode (a solid conductor) is: H2 (g) --> 2H+ (aq) + 2e- eq. 2 At the cathode (solid conductor), O2 is reduced: O2 (g) + 4H+ (aq) + 4e- --> 2H2O (l) eq. 3 Using Hess’s Law, estimate the heat released by oxidizing...