Question

A solution is made by dissolving 0.579 mol of nonelectrolyte solute in 891 g of benzene....

A solution is made by dissolving 0.579 mol of nonelectrolyte solute in 891 g of benzene. Calculate the freezing point, Tf, and boiling point, Tb, of the solution.

Homework Answers

Answer #1

molality = moles of solute / mass of solvent (kg)

               = 0.579 / 0.891

              = 0.65 m

Solvent Boiling Point (°C) Kb(°C kg/mol) Freezing Point (°C) Kf (°C kg/mol)
Benzene 80.1 2.65 5.5 –5.12

Tf = kf x m

To - Tf = Kf x m

5.5 - Tf = 5.12 x 0.65

Tf = 2.17 oC

Tf = kf x m

Tb- To = Kb x m

Tb - 80.1 = 2.65 x 0.65

Tb = 81.82 oC

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A solution is made by dissolving 0.726 mol of nonelectrolyte solute in 857 g of benzene....
A solution is made by dissolving 0.726 mol of nonelectrolyte solute in 857 g of benzene. Calculate the freezing point, Tf, and boiling point, Tb, of the solution. Constants may be found here.
A solution is made by dissolving 0.647 mol of nonelectrolyte solute in 771 g of benzene....
A solution is made by dissolving 0.647 mol of nonelectrolyte solute in 771 g of benzene. Calculate the freezing point, Tf, and boiling point, Tb, of the solution. Constants may be found here.
A solution is made by dissolving 0.656 mol of nonelectrolyte solute in 825 g of benzene....
A solution is made by dissolving 0.656 mol of nonelectrolyte solute in 825 g of benzene. Calculate the freezing point, Tf, and boiling point, Tb, of the solution. Constants may be found here.
A solution is made by dissolving 0.539 mol of nonelectrolyte solute in 813 g of benzene....
A solution is made by dissolving 0.539 mol of nonelectrolyte solute in 813 g of benzene. Calculate the freezing point, Tf, and boiling point, Tb, of the solution. Constants may be found here.
A solution is made by dissolving 0.595 mol of nonelectrolyte solute in 835 g of benzene....
A solution is made by dissolving 0.595 mol of nonelectrolyte solute in 835 g of benzene. Calculate the freezing point, Tf, and boiling point, Tb, of the solution. Constants may be found here. Kf= 5.12 Kb= 2.53
A solution is made by dissolving 0.633 mol0.633 mol of nonelectrolyte solute in 857 g857 g...
A solution is made by dissolving 0.633 mol0.633 mol of nonelectrolyte solute in 857 g857 g of benzene. Calculate the freezing point, Tf,Tf, and boiling point, Tb,Tb, of the solution. Constants can be found in the table of colligative constants.
a solution is made by dissolving 0.585mol of nonelectrolyte solute in 889g of benzene. calculate the...
a solution is made by dissolving 0.585mol of nonelectrolyte solute in 889g of benzene. calculate the freezing point and boiling point of the solution.
1- Express the concentration of a 0.0420 M0.0420 M aqueous solution of fluoride, F−,F−, in mass...
1- Express the concentration of a 0.0420 M0.0420 M aqueous solution of fluoride, F−,F−, in mass percentage and in parts per million (ppm). Assume the density of the solution is 1.00 g/mL.1.00 g/mL. mass percentage: ppm: 2- A solution is made by dissolving 0.618 mol0.618 mol of nonelectrolyte solute in 795 g795 g of benzene. Calculate the freezing point, Tf,Tf, and boiling point, Tb,Tb, of the solution. Constants can be found in the table of colligative constants. Tf= Tb= Solvent...
A student performing this experiment finds that dissolving 9.177 g of an unknown nonelectrolyte solute in...
A student performing this experiment finds that dissolving 9.177 g of an unknown nonelectrolyte solute in 49.617 g of water forms a solution which freezes at -1.36 oC. Calculate the molar mass of the unknown solute in g/mol. Kffor water is 1.86 oC/molal; assume the freezing point of pure water is 0.00oC. Enter your answer to the ones place.
Calculate the freezing point and boiling point in each solution, assuming complete dissociation of the solute....
Calculate the freezing point and boiling point in each solution, assuming complete dissociation of the solute. Part A Calculate the freezing point of a solution containing 12.3 g FeCl3 in 180 g water. Tf = ∘C Request Answer Part B Calculate the boiling point of a solution above. Tb = ∘C Request Answer Part C Calculate the freezing point of a solution containing 4.2 % KCl by mass (in water). Express your answer using two significant figures. Tf = ∘C...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT