Question

The standard molar entropy of benzene is 173.3 J/K-mol. Calculate the change in its standard molar...

The standard molar entropy of benzene is 173.3 J/K-mol. Calculate the change in its standard molar Gibbs energy when benzene is heated from 25C to 45C.

Homework Answers

Answer #1

Solution :-

Standard molar enthalpy of the benzene = 49000 J/mol

Standard lets calculate the free energy at the 25 C = 298 K

and 45 C = 318 K

Delta G = Delta H - T*delta S

             = 49000 J - (298*173.3 J per mol K)

             = -2643.4 J /mol

Delta G = 49000 J per mol - (173.3 J per mol K * 318 K)

              = -6109.4 J per mol

so the change in the free energy is = -61.09.4 J - (-2643.4 J) = -3466 J

-3466 J * 1 kJ / 1000 J = -3.466 kJ

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Calculate the change in entropy (in J/K) when 38.7 g of nitrogen gas is heated at...
Calculate the change in entropy (in J/K) when 38.7 g of nitrogen gas is heated at a constant pressure of 1.50 atm from 22.9 ºC to 88.2 ºC. (The molar specific heats are Cv is 20.8 J/(mol-K) and Cp is 29.1 J/(mol-K) .)
Calculate the change in entropy (in J/K) when 52.8 g of nitrogen gas is heated at...
Calculate the change in entropy (in J/K) when 52.8 g of nitrogen gas is heated at a constant pressure of 1.50 atm from 16.5 ºC to 62.8 ºC. (The molar specific heats are Cv is 20.8 J/(mol-K) and Cp is 29.1 J/(mol-K) .)
Calculate the standard molar Gibbs free energy change (DeltaGrxn0) at 298 K and at 400 K...
Calculate the standard molar Gibbs free energy change (DeltaGrxn0) at 298 K and at 400 K for the following reaction (the cyclotrimerization of ethene to benzene), assuming that all heat capacities are independent of temperature:                                     3 C2H4(g)   ®   C6H6(g) + 3 H2(g).
calculate the molar entropy change when (a) water and (b) benzene are evaporated at their boiling...
calculate the molar entropy change when (a) water and (b) benzene are evaporated at their boiling points at a pressure of 1 atm. what are the entropy changes in (i) the system, (ii) the surroundings, and (iii) the universe, in each case?
HgO(s) Hg(g) O2(g) Enthaply Delta H kj/mol -90.8 61.3 Entropy Delta S   j/mol. K 70.3 174.9...
HgO(s) Hg(g) O2(g) Enthaply Delta H kj/mol -90.8 61.3 Entropy Delta S   j/mol. K 70.3 174.9 205.0 Above is a table of thermodynamics date for the chemical species in the reaction: 2HgO(s) ----> 2Hg(g)+ O2(g) at 25 C A) Calculate the molar entropy of reaction at 25 C B) Calculate the standard Gibbs free enregy of the reaction at 25 C given that the enthaply of reaction at 25 C is 304.2 Kj/mol C)Calculate the equilibrium constant for the reaction...
Trouton’s rule states that the entropy of boiling at the normal point is 85 J/mol *...
Trouton’s rule states that the entropy of boiling at the normal point is 85 J/mol * K. (a) Does the data from Example 3.2 support Trouton’s rule? (b) H2O has a heat of vaporization of 40.7 kJ/mol. Does the Delta vapS for H2O at its normal boiling point support Trouton’s rule? Can you explain any deviation? (c) Predict the boiling point of cyclohexane, C6H12, if its Delta vapH is 30.1 kJ/mol. Compare your answer to the measured normal boiling point...
Calculate the standard entropy change for the reaction: 2H2S(g) +SO2(g)→3Srh(s) +2H2O(g), where: 1. S0[Srh]=32 J/k mol...
Calculate the standard entropy change for the reaction: 2H2S(g) +SO2(g)→3Srh(s) +2H2O(g), where: 1. S0[Srh]=32 J/k mol 2. S0[H2O(g)]=189 J/k mol 3. S0[H2S(g)]=206 J/k mol 4. S0[SO2]=248 J/k mol a. +1134 J/K b. -1134 J/K c. -186 J/K d +186 J/K
Calculate the change in the molar Gibbs energy of hydrogen gas when its pressure is increased...
Calculate the change in the molar Gibbs energy of hydrogen gas when its pressure is increased isothermally from 1.0 atm to 100.0 atm at 298 K.
If the temperature of the surroundings is -244.32 °C, calculate the entropy change (in J/K) for...
If the temperature of the surroundings is -244.32 °C, calculate the entropy change (in J/K) for the system (ΔSsys), surroundings (ΔSsur) and universe (ΔSuniverse) when 40.4 g of liquid oxygen (O2) freezes. Report your answers to two decimal places. Tfus(°C) -218.79 Tvap(°C) -182.96 ΔH°fus (kJ/mol) 0.44 ΔH°vap (kJ/mol) 6.82
If the temperature of the surroundings is 38.36 °C, calculate the entropy change (in J/K) for...
If the temperature of the surroundings is 38.36 °C, calculate the entropy change (in J/K) for the system (ΔSsys), surroundings (ΔSsur) and universe (ΔSuniverse) when 48.1 g of gaseous carbon tetrachloride (CCl4) condenses. Report your answers to two decimal places. Tfus(°C) -23.00 Tvap(°C) 76.80 ΔH°fus (kJ/mol) 3.28 ΔH°vap (kJ/mol) 29.82
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT