Question

The amount 2.00 mol of a van der waals gas with a=0.245 m^6 Pa mol^-2 occupies a volume of 0.840 L if the gas is at a temperature of 85k and at a pressure of 2850 kPa. From this information, calculate the van der waals constant b and pressure p of this sample when it occupies a volume of 1680 dm^3 at T=255k.

Answer #1

**use:
(P + an^2/V^2) (V-nb) = n*R*T
R = 8.314 m^3 pa K-1 mol-1**

**1st find b:
P = 2850 kpa = 2850000 pa
V = 0.840 L = 8.40*10^-4 m^3
(P + an^2/V^2) (V-nb) = n*R*T
(2850000 + 0.245*2^2/ (8.40*10^-4)^2) * (8.40*10^-4 -2*b) =
2*8.314*85
4238889 * (8.40*10^-4 -2*b) = 1413.38
(8.40*10^-4 -2*b) = 3.33*10^-4
b = 2.5*10^-4 mol-1
Answer: b = 2.5*10^-4 mol-1**

**-----------------------
P = ?
V = 1680 dm^3 = 1.68 m^3
(P + an^2/V^2) (V-nb) = n*R*T
(P + 0.245*2^2/ (1.68)^2) * (1.68 -2*2.5*10^-4 ) =
2*8.314*255
(P+0.3472) * (1.6795) = 4240.14
P = 2524.3 Pa
Answer: P = 2524.3 Pa**

The amount n = 2.00 mol of a van der Waals gas with a = 0.245 m6
Pa mol-2 occupies a volume of 0.840 L if the gas is at a
temperature of 85.0 K and at a pressure of 2850 kPa. From this
information, calculate the van der Waals constant b and the
pressure p of this gas sample when it occupies a volume of 1.680
dm3 at T = 255 K.

A. Use the van der Waals equation to calculate the pressure
exerted by 1.205 mol of Cl2 in a volume of 4.990 L at a temperature
of 286.5 K .
B. Use the ideal gas equation to calculate the pressure exerted
by 1.205 mol of Cl2 in a volume of 4.990 L at a temperature of
286.5 K .

Use the van der Waals equation to calculate the pressure exerted
by 1.205 mol of Cl2 in a volume of 4.755 L at a temperature of
302.0 K . Use the ideal gas equation to calculate the pressure
exerted by 1.205 mol of Cl2 in a volume of 4.755 L at a temperature
of 302.0 K

Use the van der Waals equation and the ideal gas equation to
calculate the pressure for 2.00 mol He gas in a 1.00 L container at
300.0 K. 1st attempt
Part 1 (5 points)
Ideal gas law pressure_____ atm
Part 2 (5 points)
Van der Waals pressure_____ atm

Use the van der Waals equation of state to calculate the
pressure of 2.90 mol of CH4 at 457 K in a 4.50 L vessel. Van der
Waals constants can be found here.
P= ________ atm
Use the ideal gas equation to calculate the pressure under the
same conditions.
P= ______ atm

Use the van der Waals equation of state to calculate the
pressure of 4.00 mol of Xe at 483 K in a 4.20-L vessel. Van der
Waals constants can be found here.
Use the ideal gas equation to calculate the pressure under the
same conditions.

Use the ideal gas equation and the Van der Waals equation to
calculate the pressure exerted by 1.00 mole of Argon at a volume of
1.31 L at 426 K. The van der Waals parameters a and
b for Argon are 1.355 bar*dm6*mol-2
and 0.0320 dm3*mol-1, respectively. Is the
attractive or repulsive portion of the potential dominant under
these conditions?

Problem 18.41
For oxygen gas, the van der Waals equation of state achieves its
best fit for a=0.14N⋅m4/mol2 and
b=3.2×10−5m3/mol.
Part A
Determine the pressure in 1.7 mol of the gas at 9 ∘C if its
volume is 0.50 L , calculated using the van der Waals equation.
Express your answer using two significant figures.
Part B
Determine the pressure in 1.7 mol of the gas at 9 ∘C if its
volume is 0.50 L , calculated using the ideal...

The van der Waals equation of state is (P + a(n/V )^2)(V/n − b)
= RT, where a and b are gas-specific constants. For Hydrogen gas, a
= 2.45 × 10^-2P a · m^6 and b = 26.61 × 10^-6m^3/mol, while for an
ideal gas a = b = 0. (a) Consider trying to measure the ideal gas
constant in a lab from the relation R = P V/(nT), where P, V, n,
and T are all measured parameters. However,...

Derive an expression for the isothermal reversible expansion of
a van der Waals gas. Account physically for the way in which the
coefficients a and b appear in the expression. Using Maple, plot
the expression along with that for an ideal gas. For the van der
Waals gas, use a case first where a = 0 and b = 5.11 x
10-2 mol-1 and where a = 4.2 L2
atm mol-2 and b = 0. Take Vi = 1.0 L,...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 4 minutes ago

asked 11 minutes ago

asked 12 minutes ago

asked 25 minutes ago

asked 34 minutes ago

asked 43 minutes ago

asked 44 minutes ago

asked 44 minutes ago

asked 44 minutes ago

asked 44 minutes ago

asked 50 minutes ago

asked 54 minutes ago