Question

1. Strong base is dissolved in 565 mL of 0.400 M weak acid (Ka = 3.85...

1. Strong base is dissolved in 565 mL of 0.400 M weak acid (Ka = 3.85 × 10-5) to make a buffer with a pH of 4.07. Assume that the volume remains constant when the base is added.

a. Calculate the pKa value of the scid and determine the number of moles of acid initially present.

b. When the reaction is complete, what is the concentration ratio of conjugate base to acid?

c. How many moles of strong base were intitially added?

2.What concentration of SO32– is in equilibrium with Ag2SO3(s) and 5.10 × 10-3 M Ag ? The Ksp of Ag2SO3 is 1.5 x 10^-14.

I have tried both of these problems a million times and and the only answer that is working is my pka for the first problem. Please help!!

Homework Answers

Answer #1

1)

a)

b)

since you are adding a strong base, the ratio can be calculated from the mass action equation:

The dissociation equation of the weak acid

the ratio is:

remember

c) this is the hard one:

You know the ratio above is after adding the base, so you can assume the moles added of base are gonig to increase the initial concentration of the conjugate base, and so is going to decrease the initial concentration of the acid, it can be written as follows:

being X the moles of base added and Ci the initial moles of acid:

Solving for X:

2)

From the reaction:

you write the mass action equation, remember solids are not shown in the equation:

Solving for SO3:

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Strong base is dissolved in 645 mL of 0.400 M weak acid (Ka = 4.91 ×...
Strong base is dissolved in 645 mL of 0.400 M weak acid (Ka = 4.91 × 10-5) to make a buffer with a pH of 4.11. Assume that the volume remains constant when the base is added. Calculate the pKa value of the acid and determine the number of moles of acid initially present. When the reaction is complete, what is the concentration ratio of conjugate base to acid? How many moles of strong base were initially added?
33 . Strong base is dissolved in 565 L of 0.600 M weak acid (?a=3.30×10−5 M)(Ka=3.30×10−5...
33 . Strong base is dissolved in 565 L of 0.600 M weak acid (?a=3.30×10−5 M)(Ka=3.30×10−5 M) to make a buffer with a pH of 4.08. Assume that the volume remains constant when the base is added. HA(aq)+OH−(aq)⟶H2O(l)+A−(aq) Calculate the pKa value of the acid and determine the number of moles of acid initially present. When the reaction is complete, what is the concentration ratio of conjugate base to acid? How many moles of strong base were initially added?
Strong base is dissolved in 545 mL of 0.200 M weak acid (Ka = 4.02 ×...
Strong base is dissolved in 545 mL of 0.200 M weak acid (Ka = 4.02 × 10-5) to make a buffer with a pH of 4.11. Assume that the volume remains constant when the base is added. a) Calculate the pKa value of the acid and determine the number of moles of acid initially present. b) When the reaction is complete, what is the concentration ratio of conjugate base to acid? c) How many moles of strong base were initially...
A 25.0 mL of a weak acid is titrated with a strong base (0.1 M). Calculate...
A 25.0 mL of a weak acid is titrated with a strong base (0.1 M). Calculate the pH of the solution during the titration if the weak acid concentration is 0.10 M and its Ka = 1.8 x 10-5 and 10.0 mL of base has been added.
A buffer solution is made by mixing 0.100 liter each of 0.400 M acetic acid and...
A buffer solution is made by mixing 0.100 liter each of 0.400 M acetic acid and 0.200 M sodium acetate. For acetic acid, Ka=1.8 x 10^-5 a. What is the pH of the buffer? b. Assuming no change in volume, what is the pH of the solution after the addition of 0.0100 moles of KOH molecules are added? (KOH is a strong base in water solution)
When a solution contains a weak acid and its conjugate base or a weak base and...
When a solution contains a weak acid and its conjugate base or a weak base and its conjugate acid, it will be a buffer solution. Buffers resist change in pH following the addition of acid or base. A buffer solution prepared from a weak acid (HA) and its conjugate base (A−) is represented as HA(aq)⇌H+(aq)+A−(aq) The buffer will follow Le Châtelier's principle. If acid is added, the reaction shifts to consume the added H+, forming more HA. When base is...
You are titrating 0.200 L of a 0.400M monoprotic weak acid with a strong base that...
You are titrating 0.200 L of a 0.400M monoprotic weak acid with a strong base that is 0.800 M. Ka= 4.8x10^-6 a) At first, there is 0.200 L of 0.400M acid and no strong base. What is the pH? b) After 35.0 mL of 0.800 M strong base is added, what is the pH? c) How many mL of 0.800 M strong base must be added to reach the half equivalence point? d) What is the pH of the equivalence...
1)Design a buffer that has a pH of 10.12 using one of the weak base/conjugate acid...
1)Design a buffer that has a pH of 10.12 using one of the weak base/conjugate acid systems shown below. Weak Base Kb Conjugate Acid Ka pKa CH3NH2 4.2×10-4 CH3NH3+ 2.4×10-11 10.62 C6H15O3N 5.9×10-7 C6H15O3NH+ 1.7×10-8 7.77 C5H5N 1.5×10-9 C5H5NH+ 6.7×10-6 5.17 How many grams of the bromide salt of the conjugate acid must be combined with how many grams of the weak base, to produce 1.00 L of a buffer that is 1.00 M in the weak base? grams bromide...
Titration 1: weak acid (CH3COOH) w/ strong base (NaOH) Titration 2: strong acid (HCl) w/ strong...
Titration 1: weak acid (CH3COOH) w/ strong base (NaOH) Titration 2: strong acid (HCl) w/ strong base (NaOH) - Concerning the above two titrations, answering the following questions: 1.) Calculate the theoretical equivalence point in terms of NaOH added for each of the titrations. Assume the concentration of acid is 0.81 M and the concentration of base is 0.51 M. 2.) Which equation can be used to find the pH of a buffer? Calculate the pH of a buffer containing...
If a buffer solution is 0.160 M in a weak acid (Ka = 3.4 × 10-5)...
If a buffer solution is 0.160 M in a weak acid (Ka = 3.4 × 10-5) and 0.510 M in its conjugate base, what is the pH? If a buffer solution is 0.260 M in a weak base (Kb = 6.9 × 10-5) and 0.550 M in its conjugate acid, what is the pH? Please show work that way it's actually learning and not just giving an answer. Thank you!
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT