Question

At 25oC rate constant for the reaction I-(aq) + ClO-(aq) IO-(aq) + Cl-(aq) is 0.0606 M-1s-1....

At 25oC rate constant for the reaction I-(aq) + ClO-(aq) IO-(aq) + Cl-(aq) is 0.0606 M-1s-1. If a solution is initially 3.50 × 10-3 M with respect to each reactant, what will be the concentration of each species present after 300s?

Results must be reported to the correct number of significant figures.

Homework Answers

Answer #1

Answer – Given, rate constant k = 0.0606 M-1.s-1 , [I-]o = 3.50*10-3 M ,

[ClO-]o = 3.50*10-3 M , time t = 300 s

From the unit of the rate constant we are getting that this is second order reaction

So the formula for the second order reaction –

First reactant –

1/[I-] = -k*t + 1/[I-]o

So, 1/[I-] = 0.0606 M-1.s-1 *300 s + 1/3.50*10-3 M

              = 303.89 M

So, [I-] = 3.29*10-3 M

Now for second reactant –

1/[ClO-]= -k*t + 1/[ClO-]o

So, 1/[ClO-] = 0.0606 M-1.s-1 *300 s + 1/3.50*10-3 M

                   = 303.89 M

So, [ClO-]= 3.29*10-3 M

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Reaction (i) Pb2+(aq) + 2 Cl-(aq) ⇌ PbCl2(s) If NaOH is added to reaction (i), a...
Reaction (i) Pb2+(aq) + 2 Cl-(aq) ⇌ PbCl2(s) If NaOH is added to reaction (i), a second precipitation reaction will occur: Reaction (ii) Pb2+(aq) + 2 OH-(aq) ⇌ Pb(OH)2(s) The important aspect of this is that the two reactions take place within the same container (just because we draw them separately on paper does not mean they are separate inside in the container). Thus, reaction (i) and (ii) are coupled at the molecular level by a common chemical species that...
Rate constants for the reaction NO2(g)+CO(g)?NO(g)+CO2(g) are 1.3M?1s?1 at 700 K and 23.0M?1s?1 at 800 K....
Rate constants for the reaction NO2(g)+CO(g)?NO(g)+CO2(g) are 1.3M?1s?1 at 700 K and 23.0M?1s?1 at 800 K. Part A What is the value of the activation energy in kJ/mol? Ea = 134   kJ/mol   SubmitMy AnswersGive Up Correct Part B What is the rate constant at 770K ? Express your answer using two significant figures. k =   /(M?s)
The initial concentrations of I2 and I− in the reaction below are each 0.0401 M. If...
The initial concentrations of I2 and I− in the reaction below are each 0.0401 M. If the initial concentration of I−3 is 0 M and the equilibrium constant is Kc=0.25 under certain conditions, what is the equilibrium concentration (in molarity) of I−? I−3(aq)↽−−⇀I2(aq)+I−(aq) Your answer should include two significant figures.
1,The average rate of the following reaction at a certain temperature is 2.93×10-2 M/min. Calculate the...
1,The average rate of the following reaction at a certain temperature is 2.93×10-2 M/min. Calculate the value for the rate of change of [Na3PO4], in M/min, at this temperature. Report your answer to three significant figures in scientific notation. 3Ba(NO3)2(aq) + 2Na3PO4(aq) → Ba3(PO4)2(s) + 6NaNO3(aq) 2,If the intial concentration of Ba(NO3)2 is 0.351 M and the initial concentration of Na3PO4 is 0.414 M, determine the concentration of Na3PO4 (in M) after 147 seconds. Assume the volume of the solution...
A.) The reversible chemical reaction A+B⇌C+D has the following equilibrium constant: Kc=[C][D][A][B]=3.9 Initially, only A and...
A.) The reversible chemical reaction A+B⇌C+D has the following equilibrium constant: Kc=[C][D][A][B]=3.9 Initially, only A and B are present, each at 2.00 M. What is the final concentration of A once equilibrium is reached? Express your answer to two significant figures and include the appropriate units. B.)What is the final concentration of D at equilibrium if the initial concentrations are [A] = 1.00 M and [B] = 2.00 M ? Express your answer to two significant figures and include the...
Consider the reaction of peroxydisulfate ion (S2O2−8S2O82−) with iodide ion (I−I−) in aqueous solution: S2O2−8(aq)+3I−(aq)→2SO2−4(aq)+I−3(aq)S2O82−(aq)+3I−(aq)→2SO42−(aq)+I3−(aq). At...
Consider the reaction of peroxydisulfate ion (S2O2−8S2O82−) with iodide ion (I−I−) in aqueous solution: S2O2−8(aq)+3I−(aq)→2SO2−4(aq)+I−3(aq)S2O82−(aq)+3I−(aq)→2SO42−(aq)+I3−(aq). At a particular temperature the rate of disappearance of S2O2−8S2O82− varies with reactant concentrations in the following manner: Experiment S2O2−8(M)S2O82−(M) I−(M)I−(M) Initial Rate (M/s)(M/s) 1 0.018 0.036 2.6×10−62.6×10−6 2 0.027 0.036 3.9×10−63.9×10−6 3 0.036 0.054 7.8×10−67.8×10−6 4 0.050 0.072 1.4×10−5 What is the average value of the rate constant for the disappearance of S2O2−8S2O82− based on the four sets of data? How is the rate...
The reversible chemical reaction A+B⇌C+D has the following equilibrium constant: Kc=[C][D][A][B]=7.4 Part A Initially, only A...
The reversible chemical reaction A+B⇌C+D has the following equilibrium constant: Kc=[C][D][A][B]=7.4 Part A Initially, only A and B are present, each at 2.00 M. What is the final concentration of A once equilibrium is reached? Express the molar concentration numerically using two significant figures. Part B What is the final concentration of D at equilibrium if the initial concentrations are [A] = 1.00 MM and [B] = 2.00 MM ? Express the molar concentration numerically using two significant figures.
1.) Consider the reaction of peroxydisulfate ion (S2O2−8) with iodide ion (I−) in aqueous solution: S2O2−8(aq)+3I−(aq)→2SO2−4(aq)+I−3(aq)....
1.) Consider the reaction of peroxydisulfate ion (S2O2−8) with iodide ion (I−) in aqueous solution: S2O2−8(aq)+3I−(aq)→2SO2−4(aq)+I−3(aq). What is the rate of disappearance of I− when [S2O2−8]= 3.5×10−2 M and [I−]= 5.5×10−2 M ? 2.) Consider the reaction 2H3PO4→P2O5+3H2O Using the information in the following table, calculate the average rate of formation of P2O5 between 10.0 and 40.0 s. Time (s)010.0, 20.0, 30.0, 40.0, 50.0[P2O5] (M)02.20×10−3, 5.20×10−3, 7.00×10−3, 8.20×10−3, 8.80×10−3 3.) The reactant concentration in a second-order reaction was 0.470 M...
The reversible chemical reaction A+B⇌C+D has the following equilibrium constant: Kc=[C][D][A][B]=7.5 Part A Initially, only A...
The reversible chemical reaction A+B⇌C+D has the following equilibrium constant: Kc=[C][D][A][B]=7.5 Part A Initially, only A and B are present, each at 2.00 M. What is the final concentration of A once equilibrium is reached? Express your answer to two significant figures and include the appropriate units. part b What is the final concentration of D at equilibrium if the initial concentrations are [A] = 1.00 M and [B] = 2.00 M ? Express your answer to two significant figures...
The reversible chemical reaction A+B⇌C+D has the following equilibrium constant: Kc=[C][D][A][B]=7.5 Part A Initially, only A...
The reversible chemical reaction A+B⇌C+D has the following equilibrium constant: Kc=[C][D][A][B]=7.5 Part A Initially, only A and B are present, each at 2.00 M. What is the final concentration of A once equilibrium is reached? Express your answer to two significant figures and include the appropriate units. Part B What is the final concentration of D at equilibrium if the initial concentrations are[A] = 1.00 M and [B] = 2.00 M ? Express your answer to two significant figures and...