Question

Calculate the ΔH∘ for this reaction using the following thermochemical data: CH4(g)+2O2(g)⟶CO2(g)+2H2O(l) ΔH∘=−890.3kJ C2H4(g)+H2(g)⟶C2H6(g) ΔH∘=−136.3kJ 2H2(g)+O2(g)⟶2H2O(l)...

Calculate the ΔH∘ for this reaction using the following thermochemical data:

CH4(g)+2O2(g)⟶CO2(g)+2H2O(l) ΔH∘=−890.3kJ
C2H4(g)+H2(g)⟶C2H6(g) ΔH∘=−136.3kJ
2H2(g)+O2(g)⟶2H2O(l) ΔH∘=−571.6kJ
2C2H6(g)+7O2(g)⟶4CO2(g)+6H2O(l)

Homework Answers

Answer #1

Multiply first equation with 4,

4CH4(g) + 8O2(g) ---> 4CO2(g) + 8H2O(l)   dHo = -3561.2 kJ

Multiply the second equation and reverse it,

2C2H6(g) ----> 2C2H4(g) + 2H2(g)      dHo = 272.6 kJ

Add the two and subtract third equation from it,

    2C2H6(g) + 4CH4(g) + 8O2(g) ---> 4CO2(g) + 8H2O(l) + 2C2H4(g) + 2H2(g)

-   2H2(g) + O2(g) ----> 2H2O(l)

-------------------------------------------------------------------------------------------------------------

2C2H6(g) + 4CH4(g) + 7O2(g) ----> 4CO2(g) + 6H2O(g) + 2C2H4(g)

pl. note we need another equation to cancel out CH4 and C2H4 on each side.

dHo = -3561.2 + 272.6 + 571.6 = -2717.0 kJ

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
We can use Hess's law to calculate enthalpy changes that cannot be measured. One such reaction...
We can use Hess's law to calculate enthalpy changes that cannot be measured. One such reaction is the conversion of methane to ethylene: 2CH4(g)⟶C2H4(g)+2H2(g) Calculate the ΔH∘ for this reaction using the following thermochemical data: CH4(g)+2O2(g)⟶CO2(g)+2H2O(l) ΔH∘=−890.3kJ C2H4(g)+H2(g)⟶C2H6(g) ΔH∘=−136.3kJ 2H2(g)+O2(g)⟶2H2O(l) ΔH∘=−571.6kJ 2C2H6(g)+7O2(g)⟶4CO2(g)+6H2O(l ΔH∘=−3120.8kJ
We can use Hess's law to calculate enthalpy changes that cannot be measured. One such reaction...
We can use Hess's law to calculate enthalpy changes that cannot be measured. One such reaction is the conversion of methane to ethylene: 2CH4(g)⟶C2H4(g)+2H2(g) Part A Calculate the ΔH∘ for this reaction using the following thermochemical data: CH4(g)+2O2(g)⟶CO2(g)+2H2O(l) ΔH∘=−890.3kJ C2H4(g)+H2(g)⟶C2H6(g) ΔH∘=−136.3kJ 2H2(g)+O2(g)⟶2H2O(l) ΔH∘=−571.6kJ 2C2H6(g)+7O2(g)⟶4CO2(g)+6H2O(l) ΔH∘=−3120.8kJ Express your answer to four significant figures and include the appropriate units.
Given the following data: H2(g) + 1/2O2(g) → H2O(l) ΔH° = -286.0 kJ C(s) + O2(g)...
Given the following data: H2(g) + 1/2O2(g) → H2O(l) ΔH° = -286.0 kJ C(s) + O2(g) → CO2(g) ΔH° = -394.0 kJ 2CO2(g) + H2O(l) → C2H2(g) + 5/2O2(g) ΔH° = 1300.0 kJ Calculate ΔH° for the reaction: 2C(s) + H2(g) → C2H2(g)
Hess's Law Given the following data: 2C(s) + 2H2(g) + O2(g) → CH3OCHO(l) ΔH°=-366.0 kJ CH3OH(l)...
Hess's Law Given the following data: 2C(s) + 2H2(g) + O2(g) → CH3OCHO(l) ΔH°=-366.0 kJ CH3OH(l) + O2(g) → HCOOH(l) + H2O(l) ΔH°=-473.0 kJ C(s) + 2H2(g) + 1/2O2(g) → CH3OH(l) ΔH°=-238.0 kJ H2(g) + 1/2O2(g) → H2O(l) ΔH°=-286.0 kJ calculate ΔH° for the reaction: HCOOH(l) + CH3OH(l) → CH3OCHO(l) + H2O(l)
What mass of natural gas (CH4) must you burn to emit 275 kJ of heat? CH4(g)+2O2(g)→CO2(g)+2H2O(g)ΔH∘rxn=−802.3kJ...
What mass of natural gas (CH4) must you burn to emit 275 kJ of heat? CH4(g)+2O2(g)→CO2(g)+2H2O(g)ΔH∘rxn=−802.3kJ m = Pentane (C5H12) is a component of gasoline that burns according to the following balanced equation: C5H12(l)+8O2(g)→5CO2(g)+6H2O(g) Part A Calculate ΔH∘rxn for this reaction using standard enthalpies of formation. (The standard enthalpy of formation of liquid pentane is -146.8 kJ/mol.) Express your answer using five significant figures. ΔH∘rxn = kJ
the combustion of methane, CH4, in oxygen. CH4(g) + 2O2(g) >> CO2(g) + 2H2O (l) the...
the combustion of methane, CH4, in oxygen. CH4(g) + 2O2(g) >> CO2(g) + 2H2O (l) the heat of reaction at 77C and 1.00 atm is -885.5 kJ. what is the change in volume when 1.00 mol CH4 reacts with 2.00 mol O2. what is w for this change? calculate delta U (change in U) for the change indicated by the chemical equation
Imagine that a chemist puts 8.48 mol each of C2H6 and O2 in a 1.00-L container...
Imagine that a chemist puts 8.48 mol each of C2H6 and O2 in a 1.00-L container at constant temperature of 284 °C. This reaction occurs: 2C2H6(g) + 7O2(g) ⇄ 4CO2(g) + 6H2O(g) When equilibrium is reached, 1.06 mol of CO2 is in the container. Find the value of Keq for the reaction at 284 °C. Find the Equilbrium constant using both concentration values and pressure values.
Calculate ΔH° for the combustion of methane (products are CO2(g) and H2O(l)), given the following thermochemical...
Calculate ΔH° for the combustion of methane (products are CO2(g) and H2O(l)), given the following thermochemical equations: CH4(g) + O2(g) →CH2O(g) + H2O(g) ΔH = -284 kJ CH2O(g) + O2(g) →CO2(g) + H2O(g) ΔH = -518 kJ H2O(g) →H2O(l) ΔH = +44 kJ
1.) Describe the relationship between∆Esys and ∆Esurr,. 2.) Calculate ΔH° for the following reaction using standard...
1.) Describe the relationship between∆Esys and ∆Esurr,. 2.) Calculate ΔH° for the following reaction using standard enthalpies of formation. 2C2H6(g) + 7O2(g)—> 6H2O(g) + 4CO2(g)
Given the following data: HNO3(l) → 1/2N2(g) + 3/2O2(g) + 1/2H2(g) ΔH° = 174.1 kJ 2N2(g)...
Given the following data: HNO3(l) → 1/2N2(g) + 3/2O2(g) + 1/2H2(g) ΔH° = 174.1 kJ 2N2(g) + 5O2(g) → 2N2O5(g) ΔH° = 28.4 kJ H2(g) + 1/2O2(g) → H2O(l) ΔH° = -285.8 kJ Calculate ΔH° for the reaction: 2HNO3(l) → N2O5(g) + H2O(l) Note that you should be able to answer this one without needing to use any additional information from the thermo table.