Question

What temperature (in °C) did an ideal gas shift to if it was initially at -10.0...

What temperature (in °C) did an ideal gas shift to if it was initially at -10.0 °C at 4.62 atm and 35.0 L and the pressure was changed to 8.71 atm and the volume changed to 15.0 L?

Homework Answers

Answer #1

Hi we can use ideal gas equation for this purpose here

PV = nRT, n & R are constant

P1V1 / P2V2 = T1 / T2

P1 = initial pressure = 4.62 atm; V1 = initial volume = 35 L; T1 = -10 oC = -10 + 273 = 263 K;

P2 = final pressure = 8.71 atm; V2 = final volume = 15L; T2 = final temp =

T2 = (P2V2 / P1V1) x T1 = [(8.71 atm x 15 L) / (4.62 atm x 35 L)] x 263 K

T1 = 212.498144712 = 212.5 K = 212 - 273 = -60.5 oC

Answer:    -60.5 oC (negative sign present)

Hope this helped you!

Thank You So Much! Please Rate this answer as you wish.("Thumbs Up")

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An ideal gas with ? = 1,68 is initially at 4°C in a volume of 9,5...
An ideal gas with ? = 1,68 is initially at 4°C in a volume of 9,5 L at a pressure of 1 atm. It is then expanded adiabatically to a volume of 11,3 L. What is the final temperature (°C ) of the gas? Thanks :)
One mole of an ideal gas initially at a temperature of Ti = 5.6°C undergoes an...
One mole of an ideal gas initially at a temperature of Ti = 5.6°C undergoes an expansion at a constant pressure of 1.00 atm to nine times its original volume.? (a) Calculate the new temperature Tf of the gas. _____ K (b) Calculate the work done on the gas during the expansion.? _____kJ
One mole of an ideal gas initially at a temperature of Ti = 7.6°C undergoes an...
One mole of an ideal gas initially at a temperature of Ti = 7.6°C undergoes an expansion at a constant pressure of 1.00 atm to three times its original volume. (a) Calculate the new temperature Tf of the gas. K (b) Calculate the work done on the gas during the expansion. kJ
4. Three moles of a monatomic ideal gas are initially at a pressure of 1.00 atm...
4. Three moles of a monatomic ideal gas are initially at a pressure of 1.00 atm and a temperature of 20.0OC. The gas is compressed adiabatically to a final pressure of 5.00 atm. Find: (a) the initial volume of the gas; (b) the final volume of the gas; (c) the final temperature of the gas; (d) the work done by the gas during the compression. Answers: (a) 72.1 L; (b) 27.5 L; (c) 285 OC; (d) -97.8 atm-L Please show...
A cylinder contains an ideal gas at the temperature of 300 K and is closed by...
A cylinder contains an ideal gas at the temperature of 300 K and is closed by a movable piston. The gas, which is initially at a pressure of 3 atm occupying a volume of 30 L, expands isothermally to a volume of 80 L. The gas is then compressed isobarically, returning to its initial volume of 30 L. Calculate the work done by gas: a) in isothermal expansion; b) in isobaric compression, c) in the whole process; and d) Calculate...
An ideal gas at 10.0 °C and a pressure of 2.75 x 105 Pa occupies a...
An ideal gas at 10.0 °C and a pressure of 2.75 x 105 Pa occupies a volume of 3.49 m3. (a) How many moles of gas are present? (b) If the volume is raised to 5.63 m3 and the temperature raised to 29.2 °C, what will be the pressure of the gas?
Consider an ideal gas enclosed in a 1.00 L container at an internal pressure of 10.0...
Consider an ideal gas enclosed in a 1.00 L container at an internal pressure of 10.0 atm. Calculate the work, w, if the gas expands against a constant external pressure of 1.00 atm to a final volume of 20.0 L. w=____J Now calculate the work done if this process is carried out in two steps. 1. First, let the gas expand against a constant external pressure of 5.00 atm to a volume of 4.00 L 2. From there, let the...
14.3 10.0 L of an ideal diatomic gas at 2.00 atm and 275K are contained in...
14.3 10.0 L of an ideal diatomic gas at 2.00 atm and 275K are contained in a cylinder with a piston. The gas first expands isobarically to 20.0 L (step 1). It then cools at constant volume back to 275 K (step 2), and finally contracts isothermally back to 10.0 L (step 3). a) Show the series of processes on a pV diagram. b) Calculate the temperature, pressure, and volume of the system at the end of each step in...
14.3 10.0 L of an ideal diatomic gas at 2.00 atm and 275K are contained in...
14.3 10.0 L of an ideal diatomic gas at 2.00 atm and 275K are contained in a cylinder with a piston. The gas first expands isobarically to 20.0 L (step 1). It then cools at constant volume back to 275 K (step 2), and finally contracts isothermally back to 10.0 L (step 3). a) Show the series of processes on a PV diagram. b) Calculate the temperature, pressure, and volume of the system at the end of each step in...
10.0 L of an ideal diatomic gas at 2.00 atm and 275 K are contained in...
10.0 L of an ideal diatomic gas at 2.00 atm and 275 K are contained in a cylinder with a piston. The gas first expands isobarically to 20.0 L (step 1). It then cools at constant volume back to 275 K (step 2), and finally contracts isothermally back to 10.0 L (step 3). a) Show the series of processes on a pV diagram. b) Calculate the temperature, pressure, and volume of the system at the end of each step in...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT