Question

What temperature (in °C) did an ideal gas shift to if it was initially at -10.0...

What temperature (in °C) did an ideal gas shift to if it was initially at -10.0 °C at 4.62 atm and 35.0 L and the pressure was changed to 8.71 atm and the volume changed to 15.0 L?

Homework Answers

Answer #1

Hi we can use ideal gas equation for this purpose here

PV = nRT, n & R are constant

P1V1 / P2V2 = T1 / T2

P1 = initial pressure = 4.62 atm; V1 = initial volume = 35 L; T1 = -10 oC = -10 + 273 = 263 K;

P2 = final pressure = 8.71 atm; V2 = final volume = 15L; T2 = final temp =

T2 = (P2V2 / P1V1) x T1 = [(8.71 atm x 15 L) / (4.62 atm x 35 L)] x 263 K

T1 = 212.498144712 = 212.5 K = 212 - 273 = -60.5 oC

Answer:    -60.5 oC (negative sign present)

Hope this helped you!

Thank You So Much! Please Rate this answer as you wish.("Thumbs Up")

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An ideal gas with ? = 1,68 is initially at 4°C in a volume of 9,5...
An ideal gas with ? = 1,68 is initially at 4°C in a volume of 9,5 L at a pressure of 1 atm. It is then expanded adiabatically to a volume of 11,3 L. What is the final temperature (°C ) of the gas? Thanks :)
One mole of an ideal gas initially at a temperature of Ti = 5.6°C undergoes an...
One mole of an ideal gas initially at a temperature of Ti = 5.6°C undergoes an expansion at a constant pressure of 1.00 atm to nine times its original volume.? (a) Calculate the new temperature Tf of the gas. _____ K (b) Calculate the work done on the gas during the expansion.? _____kJ
One mole of an ideal gas initially at a temperature of Ti = 7.6°C undergoes an...
One mole of an ideal gas initially at a temperature of Ti = 7.6°C undergoes an expansion at a constant pressure of 1.00 atm to three times its original volume. (a) Calculate the new temperature Tf of the gas. K (b) Calculate the work done on the gas during the expansion. kJ
4. Three moles of a monatomic ideal gas are initially at a pressure of 1.00 atm...
4. Three moles of a monatomic ideal gas are initially at a pressure of 1.00 atm and a temperature of 20.0OC. The gas is compressed adiabatically to a final pressure of 5.00 atm. Find: (a) the initial volume of the gas; (b) the final volume of the gas; (c) the final temperature of the gas; (d) the work done by the gas during the compression. Answers: (a) 72.1 L; (b) 27.5 L; (c) 285 OC; (d) -97.8 atm-L Please show...
An ideal gas at 10.0 °C and a pressure of 2.75 x 105 Pa occupies a...
An ideal gas at 10.0 °C and a pressure of 2.75 x 105 Pa occupies a volume of 3.49 m3. (a) How many moles of gas are present? (b) If the volume is raised to 5.63 m3 and the temperature raised to 29.2 °C, what will be the pressure of the gas?
Consider an ideal gas enclosed in a 1.00 L container at an internal pressure of 10.0...
Consider an ideal gas enclosed in a 1.00 L container at an internal pressure of 10.0 atm. Calculate the work, w, if the gas expands against a constant external pressure of 1.00 atm to a final volume of 20.0 L. w=____J Now calculate the work done if this process is carried out in two steps. 1. First, let the gas expand against a constant external pressure of 5.00 atm to a volume of 4.00 L 2. From there, let the...
14.3 10.0 L of an ideal diatomic gas at 2.00 atm and 275K are contained in...
14.3 10.0 L of an ideal diatomic gas at 2.00 atm and 275K are contained in a cylinder with a piston. The gas first expands isobarically to 20.0 L (step 1). It then cools at constant volume back to 275 K (step 2), and finally contracts isothermally back to 10.0 L (step 3). a) Show the series of processes on a pV diagram. b) Calculate the temperature, pressure, and volume of the system at the end of each step in...
14.3 10.0 L of an ideal diatomic gas at 2.00 atm and 275K are contained in...
14.3 10.0 L of an ideal diatomic gas at 2.00 atm and 275K are contained in a cylinder with a piston. The gas first expands isobarically to 20.0 L (step 1). It then cools at constant volume back to 275 K (step 2), and finally contracts isothermally back to 10.0 L (step 3). a) Show the series of processes on a PV diagram. b) Calculate the temperature, pressure, and volume of the system at the end of each step in...
10.0 L of an ideal diatomic gas at 2.00 atm and 275 K are contained in...
10.0 L of an ideal diatomic gas at 2.00 atm and 275 K are contained in a cylinder with a piston. The gas first expands isobarically to 20.0 L (step 1). It then cools at constant volume back to 275 K (step 2), and finally contracts isothermally back to 10.0 L (step 3). a) Show the series of processes on a pV diagram. b) Calculate the temperature, pressure, and volume of the system at the end of each step in...
2. What is the temperature in Kelvin for 0.112 moles of an ideal gas at 0.888...
2. What is the temperature in Kelvin for 0.112 moles of an ideal gas at 0.888 atm in a container that has a volume of 675 mL? (Your answer should have three significant figures). 3.What is the total pressure in atm for a 1807 mL container at 28.05º C that contains 5.00 grams each of CO2, H2O, and N2? (The answer should have three sig figs.) 4. A Noble Gas has a density of 2.3013 g/L at 1185.6 torr and...